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A relativistic three-body theory previously used to generate the & has been applied to
the 1+ state of three pions. An A, resonance pole is produced with MA, =1160 MeV, 1'/2
=90 MeV, but there is no associated phase variation of the amplitude.

There has been growing concern over the em-
barassments suffered by the quark model in pre-
dicting the meson spectroscopy, and in particu-
lar the experimental absence of 1' states such
as the Q andA, . Thus, the diffractively produced
enhancement observed in ~p - (3v)p at 1.1 GeV
has recently been subjected to a number of inde-
pendent and rather sophisticated analyses, and
all agree on the absence of a resonant A. , signal. '
As developed by Ascoli and collaborators, the
procedure is a variant of the isobar model in
which one writes the amplitude for a three-body
"decay" in the form T =Q Q t, where t „is a
two-body scattering amplitude and depends ex-
plicitly on the pair subenergy s„. The f„are
treated as complex fitting parameters, and one
subsequently studies their phase variation with
respect to some (nonresonant) reference ampli-
tude. This works quite nicely for the A„which
exhibits Breit-Wigner behavior with the phase
varying through 90 . In contrast, the A, phase
variation is quite flat, and one is apparently
forced to a nonresonant interpretation. A recent
attempt by Ascoli and Wyld to answer previous
criticism of the methodology' has led to the same
negative conclusion. '

In this Letter I show that an absence of distinc-
tive phase variation is not only compatible with
an A, resonance pole, but (1) is an automatic
consequence of a simple dynamical model. More-
over, we argue that such behavior (2) is a gener-
al feature of a properly unitarized amplitude,
provided the effect is dynamical, and (3) has a
simple physical interpretation. Specifically, we
observe that a resonant amplitude need not ex-
hibit a large change of phase, as assumed in
these analyses. In fact, this is a familiar phe-
nomenon associated with very inelastic reso-
nances. For example, consider a system in
which two orthogonal channels are dynamically
coupled (e.g. , ~m and KE7); in such a system the
elastic amplitudes have the form t„=[q exp(2i&„)
—1]/2i. If the amplitudes are resonant and @&-,,
the phase shifts 6„are roughly sinusoidal, pass-

ing through zero (rather than &/2) when Re(t„)
=0. Typically, the magnitude of this oscilt.ation
is quite small (& 30'), in which case one may
easily show that the phase of the amplitude itself
exhibits a similar small oscillation about ~/2.
One would not expect to detect this in an Ascoli-
type analysis, particularly in view of simplifying
approximations (e.g. , neglect of the subenergy
dependence of the parameters fg. We then ob-
serve that in the isobar approximation, the A,
state of three pions is precisely such a system,
containing two strong competing channels (p~
and ev). Therefore, it would not be at all sur-
prising if the relevant phase behavior were of the
second, weaker type.

This conjecture is supported by explicit cal-
culations based on the author's covariant bound-
ary-condition formalism (BCF), which has re-
cently been applied to a number of relativistic
three™particle systems. ' ' In the present con-
text, we have used it to study the amplitude T3
=Q „v„describing 3& scattering in a. 1' (I= 1)
state. We thus consider T(N~-lV3&) to be of the
form T =T~*T3+..., where T~ is an appropriate
production amplitude. Provided that the A, is
indeed a dynamical effect, we would expect T3
to contain the corresponding resonance pole
(rather than T~). For this purpose the BCF may
be employed in two complementary ways. In its
most general form, it provides a general solu-
tion of the three-particle unitarity relations, and
hence any physical amplitude can be constructed
given suitable input. Conversely, the class of
allowable input exhausts the possible physical
amplitudes, and thus one can determine whether
any input which produces anA, peak in T3 will
also produce a large phase variation. The an-
swer turns out to be "no, "which is a model-in-
dependent result. Furthermore, the formalism
permits an explicit analytic continuation onto the
second sheet of the total (3s') energy; in this way
it has been verified that each such peak corre-
sponds to an associated pole. Secondly, input to
the BCF has a straightforward dynamical inter-
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pretation, and can be estimated for a simple
model which has previously been applied to cal-
culate them and + as dynamical 371 effects. ' It
is therefore interesting that the same model
"predicts" an A. y state of approximately the right
mass and width (and with negligible phase varia-
tion). Together, these results indicate that the
0, 1, 1+ states can be understood in terms of
potentiallike forces generated by particle ex-
change.

As noted by Amado, ' a minimal scheme for
unitarizing three-particle amplitudes must take
the form of a one-dimensional integral equation.
The key ingredients of such an equation are well
known; in order to produce the primary (model-
independent) singularity structure, the kernel
must contain a pole corresponding to the free

propagation of all three particles, and two-par-
ticle propagators characterized by elastic phase
shifts. The minimal form of the BCF corre-
sponds to a trivial dynamical model possessing
all of these features; additional parameters in
the general form correct the dynamical details
via the addition of qonsingular terms. Although
the BCF is particularly efficient for this type of
analysis, it should be emphasized that our more
general results [(2) and (3) above] will be a fea-
ture of any properly unitarized amplitude.

The BCF builds on a trivial model in which the
pairwise interaction of P - y is compressed to the
surface of an impenetrable boundary at I rR —r& l

=a „. The scattering is described by an energy-
dependent logarithmic derivative of the wave
function at that radius, A. „,(K„'). The two-body
amplitudes are then t„,(K„)=N„,/D „„with

N , (K Q = [a „A.„,(K 2) —l ] j,(a „K„)+a „K„j, , (a „K„),
D l(K J ='lK ( [QQ l(K ) —l]Al (0+K ) +0 K Jgl &(0 K )] .

Here K „is the c.m. momentum of the p-y pair; A. „,(K ') and a „are fitted to scattering data in the phys-
ical region K„' -0. Since X„, must be mel'omoxphic in K„' in order to produce unitary (elastic) ampli-
tudes, this fit permits analytic continuation of N, ,D„, for ~ '&0. Below I use the notation N &',D„,'
to denote N„„D, evaluated with A. „,(K„') replaced by the constant value X„,(- p'). If one considers the
three-particle system with p-y separated by a in their c.m. frame, it is obvious that there is a char-

acteristicc

distance b „ofparticle cl from the p -y c m. such that I r„-r R I
~ a

&
and/or I r„-r& I

~ a ~, b „
characterizes the interior region in which the cores may overlap.

In the present application we take the 1' state to be composed of two components corresponding to
l =1,X =0, and E =0,1 =1, where X is the angular momentum of the spectator pion. For convenience
we label these by p and e, respectively, although an e pole was not explicitly assumed. The amplitudes
v „(s,s „) may be computed from the solution of

(2)

written in terms of the three-momentum q; of the spectator in the ith-pair c.m. frame (elluivalent to
s, for fixed s). Here i,j take on the values p, e. The relation of ~ toX is such thatX~(s, s~) is to be
compared with the isobar amplitude f&, and Q, (s, s;) is an appropriate projection onto an initial 37l

state. However, these details are not required for our present purposes. A pole in 7 (and hence T,)
can only arise via a pole in the operator (1 —K) ', this corresponds to a complex zero of the deter-
minant D (s) —=

l 1-Kl ~ One can thus study the resonant properties by constructing D(s); the rapidly
varying factor of an appropriate cross section is proportional to ID!

Conselluently, we need only consider the kernel of Eq. (2). For the minimal equation this may be ex-
pressed as'

N, , '(q, ', q,.) N,. (K,)
ll(ql Fqlt ) 'lj D ( ) N C( )

s(q I q )
s I d~G (~ A, q Q, q )8l( I% P &ljl l V~ll)

—SE

(3)

Here A;, is an isospin recoupling coefficient (A&&
= —,, A,

&

———A&, = lv 3, A, , = ~), and G;, is a geo-
metrical recoupling coefficient which would be unity if all particles were in relative s waves. The
three-vectors K, , , Q, , are the values of K, , q, in the i c.m. system expressed in terms of K~, g,. in
the j frame, and z = v,'q, The function g; arises from excluding the inner region;

a& X) =iamb j~(K)&~„(X)-Xj~.,V)h~(X)].
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We note that g&(x,x) =1, and hence the residue
of the integrand at the Green's function pole q&'
= @I, is given by the two-body amplitude t&(z;).

The general form of the BCF is obtained by re-
placing N„' N„'+A. ;, , where A;;(qq', q, )v. ,". is
an arbitrary L, function which must be real val-
ued to describe elastic three-body scattering.
As noted in Ref. 4, a rough estimate of A&,. can be
derived if one assumes it to be dominated by off-
shell corrections to the p«vertex. This leads
to the specific model
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with@&(q) = (q'+4p') ', yzz= & (similar estimates
give A & A p A p which are numerically un-
important). More generally, if potentiallike
mechanisms dominate, one expects A;,. to have
a relatively weak dependence on s, and to be a
smooth function of q', q.' It can then be expand-
ed in a complete setA =Qzc~ lX) (& I, and the cz
treated as real fitting parameters. A number of
such forms were employed to test the model de-
pendence of our result.

The required numerical procedures are straight-
forward: One distorts the q,.-integration contour
to avoid the singularity at q&' =Q,» and employs
Gaussian quadrature to reduce the equation to
finite matrix form in order to calculate D(s). To
simplify the numerics a cutoff was employed at

"=30 fm '; the calculation was quite insen-
sitive to this choice (a 1% effect for 25 fm '
&q, '"&25 fm '). Several choices of s- and p-
wave &-r phases were employed corresponding
to the range of models reported by Basdevant,
Froggatt, and Petersen, ' as well as a simple
s wave which does not exhibit the rapid change of
phase at the KK threshold (no S*). In practice,
the S* region turns out to be relatively unim-
portant since it requires a very small spectator
momentum (q, = 0), and this is suppressed both
by the A, =1 cha, ra, cter and the q&'dq; integration
weight.

Given this input and the simple model of Eq. (5),
a 1' resonance is indeed generated in the vicinity
of 1100 MeV for

happ

in the estimated range. A
typical example is illustrated in Fig. 1 (solid
curve), corresponding to y» =0.57. Writing T
=N/D(s), this result would imply a width of 220
MeV if the s dependence of N were negligible. It
is clear that the phase y(D), which would nor-
mally signal the presence of simple Breit-Wig-
ner behavior, , exhibits no noticeable variation
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FIG. 1. Dependence of ID I

2 (upper figure) and y(D)
gower figure) on the three-pion mass. The curves cor-
respond to complex energies ~s =M» —iA with & =0,
30, 60 MeV for the solid, dashed, and dash-dotted
curves, respectively.

associated with the enhancement. Since the fit-
ting parameters (yzz, or more generally the cz)
carry only weak s dependence (in the absence of
inelastic thresholds), one can hold them fixed and
perform an explicit analytic continuation. In this
way we confirm the existence of a pole 90 MeV
below the real axis on the second sheet, with a
mass of 1160 MeV. Although it was possible to
vary A in such a way as to produce no peak, it
was found that peak, pole, and minor phase var-
iation were always correlated.

With regard to the proposed "inelastic" mech-
anism, it is very suggestive that as we take v's

deeper onto the second sheet, rp(D) increasingly
takes on the characteristic appearance of such a
resonance (dashed curves of Fig. 1). We note
that by doing so we also approach closer to the
p and e poles which occur in the factor D; '(z,),
and hence more closely approach a coupled-chan-
nel problem involving stable "particles. " Nu-
merical studies confirm that the interplay be-
bveen the p and & channels is vital in producing
the effect (whereas an S* pole is not required).
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On the other hand, the limitations of the isobar
model are apparent in the damping of the effect
for real vs. Thus, one cannot escape the fact
that we are dealing with th~ee particles, with an
associated three-particle cut as well as p and e
thresholds. The net s dependence is an integrat-
ed product of these factors, and is necessarily
quite complicated; this shows up both in the non-
descript phase behavior and in the shape of the
bump in ID I

' (solid curves). We conclude that
such an A. , cannot be established by an Ascoli-
type analysis, and may well be present in the
data.
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In a study of the reaction e+e -yy in the region of the g(8684) resonance, no evidence is
found for a deviation from quantum electrodynamics. Limits are also set on the decays
g(684) —& y, $(3684) —g y, and g(3684) —X y, where X is a pseudoscalar state in the
mass range 2500-8000 MeV which subsequently decays into two y rays.

The purpose of this Letter is to report the re-
sult of a measurement of the reaction e e -yy
at center-of-mass energies close to the g(3684)
resonance. If this resonance has the quantum
numbers of the photon, J = 1, as indicated by
the destructive interference and decay angular
distribution observed in the channel e'e —p.

+
p. ,

'
then the event rate for the reaction e 'e —yy
should be solely that expected from quantum elec-
trodynamics (QED). Apparent violations of this
expectation could be observed in the present ex-
periment if the decays P(3684) -v'y or g(3684)
-rfy were to occur, or if the decay g(3684) -X'y,

yy were to exist, where X is a pseudoscalar

state with a mass in the range 2500-3000 MeV.
The experiment was done at the electron-posi-

tron storage ring (SPEAR) at the Stanford Linear
Accelerator Center using an apparatus which has
been described before, ' consisting of two identi-
cal spectrometers mounted in a collinear config-
uration about the beam interaction region. For
the detection of y rays each spectrometer con-
tains three multiwire proportional chambers
(MWPC's) with space for a lead converter be-
tween the first two, and a 20-radiation-length-
thick Nal(T1) total-absorption detector 30 in. in
diameter. Throughout the experiment the spec-
trometers were set to accept y rays produced at
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