# Radiative Decays of the Vector Mesons and the Meson Mixing Angles* 

D. H. Boal<br>Theoretical Physics Institute, Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2E1<br>and<br>R. H. Graham and J. W. Moffat<br>Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7

(Received 30 December 1975)


#### Abstract

A general $\operatorname{SU}(3)$ analysis of vector meson and pseudoscalar meson radiative decays is carried out. Two solutions are obtained corresponding either to an inverse-square mass formula or to a linear mass formula for vector mesons that lead to reasonable agreement with most of the radiative decays.


Recent measurements ${ }^{1-3}$ of vector meson radiative decays have raised the question of the validity of the quark model and $\operatorname{SU}(3)$ predictions for these processes. The quark-model prediction for example, is 3 times the value of the recent measurement. ${ }^{1}$ Since it is generally believed ${ }^{4}$ that $\mathrm{SU}(3)$ predictions should be accurate to within 20 to $30 \%$, it is important to determine whether in fact $\mathrm{SU}(3)$ symmetry is also badly violated. ${ }^{5}$
We will begin with a general $\mathrm{SU}(3)$ description of the radiative decays of the vector $(V)$ and pseudoscalar ( $P$ ) mesons,

$$
\begin{equation*}
V \rightarrow P+\gamma \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
P \rightarrow V+\gamma . \tag{2}
\end{equation*}
$$

If we denote the $\operatorname{SU}(3)$ generating currents by $J_{i}{ }^{\lambda}(x)(i=1, \ldots, 8)$, then the electromagnetic current is given by $J_{\mathrm{em}}{ }^{\lambda}=J_{3}{ }^{\lambda}+(1 / \sqrt{3}) J_{8}{ }^{\lambda}$ and the $\mathrm{SU}(3)$ structure of the matrix elements relevant to the decays (1) and (2) is ${ }^{6}$

$$
\begin{align*}
\left\langle V_{i}\right| J_{j}\left|P_{k}\right\rangle & =g d_{i j k}, \\
\left\langle V_{i}\right| J_{j}\left|P_{0}\right\rangle & =f d_{0 i j},  \tag{3}\\
\left\langle V_{0}\right| J_{j}\left|P_{i}\right\rangle & =f^{\prime} d_{0 i j},
\end{align*}
$$

where $i, j, k=1, \ldots, 8, d_{0 i j}=\sqrt{\frac{2}{3}} \delta_{i j}$, and $V_{i}, V_{0}\left(P_{i}\right.$, $P_{0}$ ) represent the vector (pseudoscalar) meson nonets. A complete description of the decays (1) and (2) requires, in addition to the three parameters introduced in Eq. (3), the vector and pseudoscalar mixing angles, $\theta_{V}$ and $\theta_{P}$, respectively.
In a first attempt to find a solution, the parameter $g$ was determined by a minimum- $\chi^{2}$ fit to the $\rho^{-} \rightarrow \pi^{-} \gamma$ and $K^{* 0} \rightarrow K^{0} \gamma$ decay rates. The vector mixing angle and $f^{\prime}$ were then determined from the $\varphi \rightarrow \pi \gamma$ and $\omega \rightarrow \pi \gamma$ decay rates. This left $\theta_{P}$
and $f$ to be determined from the $\varphi \rightarrow \eta \gamma$ decay rate. Thus, the pseudoscalar mixing angle could not be obtained uniquely, and was thereby assumed to be $-10^{\circ}$, as predicted from the Gell-Mann-Okubo quadratic mass formula.

It was found that the parameters had the values $g=0.476 \mathrm{GeV}^{-1}, f=0.769 \mathrm{GeV}^{-1}$, and $f^{\prime}=0.889$ $\mathrm{GeV}^{-1}$. The vector mixing angle was found to be $24^{\circ}$. This is very close to the value of $28^{\circ}$, which can be obtained from the inverse-square mass formula ${ }^{7}$ for the vector mesons,

$$
\begin{align*}
& \frac{1}{3}\left(4 m_{K^{*}}{ }^{-2}-m_{\rho}^{-2}\right) \\
& \quad=m_{\varphi}^{-2} \cos ^{2} \theta_{V}+m_{\omega}^{-2} \sin ^{2} \theta_{V} \tag{4}
\end{align*}
$$

This last mass formula is suggested by the spec-tral-function sum rules. ${ }^{8}$ There are, of course, ambiguities in the signs of the amplitudes of the above decay processes. It was found that different choices of sign in the amplitudes led to parameters which violated the upper bounds on other decay rates. The results of this solution, and the experimental data used to determine the parameters, are summarized in Table I.

It is of interest to consider the predicted radiative decays which are based on mixing angles that arise from linear mass formulas for both the vector and the pseudoscalar mesons. The linear mass formulas

$$
\begin{equation*}
\frac{1}{3}\left(4 m_{K *}-m_{\rho}\right)=m_{\varphi} \cos ^{2} \theta_{V}+m_{\omega} \sin ^{2} \theta_{V} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{3}\left(4 m_{K}-m_{\pi}\right)=m_{\eta} \cos ^{2} \theta_{P}+m_{\eta} \sin ^{2} \theta_{P} \tag{6}
\end{equation*}
$$

imply $\theta_{V}=37^{\circ}$ and $\theta_{P}=-24^{\circ}$. With these values and the widths $\Gamma(\varphi \rightarrow \pi \gamma), \Gamma(\omega \rightarrow \pi \gamma)$, and $\Gamma(\varphi$ $\rightarrow \eta \gamma$ ) as input, we obtain the results shown in Table II. The coupling constants turn out to be $g=0.746 \mathrm{GeV}^{-1}, f=0.876 \mathrm{GeV}^{-1}$, and $f^{\prime}=0.790$

TABLE I. Radiative decay widths predicted by SU(3) symmetry. These widths were calculated assuming $\theta_{P}$ $=-10^{\circ}$. The remaining parameters are predicted to have the values $g=0.476 \mathrm{GeV}^{-1}, f=0.769 \mathrm{GeV}^{-1}, f^{0}$ $=0.889 \mathrm{GeV}^{-1}$, and $\theta_{\boldsymbol{V}}=24^{\circ}$ 。

| Decay | Theoretical <br> width <br> $(\mathrm{keV})$ | Experimental <br> width <br> $(\mathrm{keV})$ |
| :--- | :---: | :---: |
| $\rho \rightarrow \pi \gamma$ | 35 | $35 \pm 10^{\mathrm{a}}$ |
| $\rho \rightarrow \eta \gamma$ | 26 | $<160^{\mathrm{b}}$ |
| $K^{*+} \rightarrow K^{+} \gamma$ | 20 | $<80^{\mathrm{c}}$ |
| $K^{* 0} \rightarrow K^{0} \gamma$ | 78 | $75 \pm 35^{\mathrm{d}}$ |
| $\omega \rightarrow \pi \gamma$ | 870 | $870 \pm 61^{\mathrm{c}}$ |
| $\omega \rightarrow \eta \gamma$ | 24 | $<50^{\mathrm{c}}$ |
| $\varphi \rightarrow \pi \gamma$ | 6.5 | $6.50 \pm 1.94^{\mathrm{c}}$ |
| $\varphi \rightarrow \eta \gamma$ | 81 | $81 \pm 32^{\mathrm{c}}$ |
| $\varphi \rightarrow X^{0} \gamma$ | 0.84 | $\circ \ldots$ |
| $X^{0} \rightarrow \rho \gamma$ | 130 | $<270^{\mathrm{c}}$ |
| $\boldsymbol{X}^{0} \rightarrow \omega \gamma$ | 2.6 | $<80^{\mathrm{c}}$ |


| ${ }^{\mathrm{a}}$ See Ref. 1. | ${ }^{\mathrm{c}}$ See Ref. 10. |
| :--- | :--- |
| ${ }^{\mathrm{b}}$ See Ref. 9. | ${ }^{\mathrm{d}}$ See Ref. 2. |

$\mathrm{GeV}^{-1}$. If we consider the conditions imposed by the Okubo-Zweig-Iizuka ${ }^{11}$ rule on radiative transitions, then we find that the matrix elements

$$
\left\langle V_{8}+\sqrt{2} V_{0}\right|\left(J_{3}+(1 / \sqrt{3}) J_{8}\right)\left|P_{8}-(1 / \sqrt{2}) P_{0}\right\rangle
$$

and

$$
\left\langle V_{8}-(1 / \sqrt{2}) V_{0}\right|\left(J_{3}+(1 / \sqrt{3}) J_{8}\left|P_{8}+\sqrt{2} P_{0}\right\rangle\right.
$$

must vanish, which implies

$$
\begin{equation*}
g=f=f^{\prime} . \tag{7}
\end{equation*}
$$

The continuity of quark lines is a qualitative rule for understanding the suppression of $\varphi \rightarrow 3 \pi$ decay. The approximate equality of the parameters $g, f$, and $f^{\prime}$ found in the linear-mass-formula case suggests that a minimum $-\chi^{2}$ fit to the decays $\omega \rightarrow \pi \gamma$, $\varphi \rightarrow \pi \gamma$, and $\varphi \rightarrow \eta \gamma$ with Eq. (7) imposed should yield a reasonable result. This fit is summarized in Table II.

There is evidence ${ }^{12}$ in favor of $\theta_{P}$ lying in the range $-10^{\circ}$ to $-24^{\circ}$. It is significant that this mixing angle also yields consistent results for the decays $\pi^{0} \rightarrow \gamma \gamma, \eta \rightarrow \gamma \gamma$, and $X^{0} \rightarrow \gamma \gamma$. An SU(3) analysis of these two-photon decays shows that they should depend on three parameters, singlet and octet coupling constants similar to $g$ and $f$ in Eq. (3) and $\theta_{P}$. If these coupling constants are determined from the $\pi^{0} \rightarrow \gamma \gamma$ and $\eta \rightarrow \gamma \gamma$ decay rates, the $X^{0} \rightarrow \gamma \gamma$ decay rate can be predicted. In particular, using $\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)=8.02 \pm 0.42 \mathrm{eV}^{13}$ and $\Gamma(\eta$ $\rightarrow \gamma \gamma)=0.324 \pm 0.046 \mathrm{keV},{ }^{14}$ we predict for $\theta_{P}=-10^{\circ}$ the value $\Gamma\left(X^{0} \rightarrow \gamma \gamma\right)=3.93 \mathrm{keV}$ and for $\theta_{P}=-24^{\circ}$ the value $\Gamma\left(X^{0} \rightarrow \gamma \gamma\right)=0.38 \mathrm{keV}$. These compare favorably with the experimental upper bound $\Gamma\left(X^{0} \rightarrow \gamma \gamma\right)<19 \mathrm{keV} .{ }^{15}$ It is important to emphasize that these predictions as well as those presented in Tables I and II are based only on SU(3) and do not make use of vector-meson dominance or the quark model.
The results in Table II agree well with the experimental radiative decay data with the exception of the $\rho \rightarrow \pi \gamma$ and $K^{* 0} \rightarrow K^{0} \gamma$ decays. The predicted values for these decays are fairly close to those predicted ${ }^{16}$ by the mixing angles of the quad-

TABLE II. Radiative decay widths predicted with $\theta_{V}=37^{\circ}$ and $\theta_{P}=-24^{\circ}$, as predicted by the linear mass formula. The coupling constants are determined to be $g=0.746 \mathrm{GeV}^{-1}, f=0.876 \mathrm{GeV}^{-1}$, and $f^{\ell}=0.790 \mathrm{GeV}^{-1}$ in the unconstrained fit. The constrained fit has $g=f=f^{\prime}=0.783 \mathrm{GeV}^{-1}$.

| Decay | UnconstrainedTheoretical width <br> $(\mathrm{keV})$ | Constrained | Experimental <br> width <br> (keV) |
| :--- | :---: | :---: | :---: |
| $\rho \rightarrow \pi \gamma$ | 85 | 93 | $35 \pm 10^{\mathrm{a}}$ |
| $\rho \rightarrow \eta \gamma$ | 84 | 82 | $<160^{\mathrm{b}}$ |
| $K^{*+} \rightarrow K^{+} \gamma$ | 48 | 53 | $<80^{\mathrm{c}}$ |
| $K^{* 0 \rightarrow K^{0} \gamma}$ | 190 | 210 | $75 \pm 35^{\mathrm{d}}$ |
| $\omega \rightarrow \pi \gamma$ | 870 | 890 | $870 \pm 61^{\mathrm{c}}$ |
| $\omega \rightarrow \eta \gamma$ | 12 | 10 | $<50^{\mathrm{c}}$ |
| $\varphi \rightarrow \pi \gamma$ | 6.5 | 1.9 | $6.50 \pm 1.94^{\mathrm{c}}$ |
| $\varphi \rightarrow \eta \gamma$ | 80 | 95 | $81 \pm 32^{\mathrm{c}}$ |
| $\varphi \rightarrow X^{0} \gamma$ | 1.3 | 1.1 | $\cdots+$ |
| $X^{0} \rightarrow \rho \gamma$ | 89 | 62 | $<270^{\mathrm{c}}$ |
| $X^{0} \rightarrow \omega \gamma$ | 8.9 | 6.9 | $<80^{\mathrm{c}}$ |
| ${ }^{\mathrm{a}}$ See Ref. 1. | ${ }^{\mathrm{b}}$ See Ref. 9. | ${ }^{\mathrm{c}}$ See Ref. 10. | ${ }^{\mathrm{d}}$ See Ref. 2. |

ratic mass formula. However, the experimental errors quoted for these rates may be too conservative. For the $\rho^{-} \rightarrow \pi^{-} \gamma$ decay, in particular, the experimental analysis ${ }^{17}$ cannot at present distinguish between the value $35 \pm 10 \mathrm{keV}$, quoted in the literature, and a value of $80 \pm 10 \mathrm{keV}$. The latter value would be in excellent agreement with that predicted here on $\mathrm{SU}(3)$ arguments, and also by simple vector-meson dominance ${ }^{18}$ without $\mathrm{SU}(3)$. More experimental information on these decays is clearly required.
We can conclude from our results that there are solutions based on conventional $\mathrm{SU}(3)$ that are consistent with most of the new radiative decay data. In particular, the fact that one solution chooses linear mass formulas for the mesons and leads naturally to the Okubo-Zweig-Iizuka ${ }^{11}$ quarkline rules is very interesting and deserved further study.
*Work supported in part by the National Research Council of Canada.
${ }^{1}$ B. Gobbi, J. L. Rosen, H. A. Scott, S. L. Shapiro, L. Strawczynski, and C. M. Meltzer, Phys. Rev. Lett. 33, 1450 (1974).
${ }^{2}$ N. C. Carrithers, P. Mühlemann, D. Underwood, and D. G. Ryan, Phys. Rev. Lett. 35, 349 (1975).
${ }^{3} \mathrm{C}$. Bemporad, in Proceedings of the International Symposium on Lepton and Photon Intevactions at High Energies, Stanford, California, 1975, edited by W. T. Kirk (Stanford Linear Accelerator Center, Stanford, Calif., 1975)
${ }^{4}$ For a recent review, see J.L. Rosner, Phys. Rep. 11, 189 (1974).
${ }^{5}$ B. Edwards and A. N. Kamal, Phys. Rev. Lett. 36, 241 (1976) 。
${ }^{6}$ Here, all four-vector dependence has been suppressed. The complete expressions are given by

$$
\left[(2 \pi)^{3} 4 k_{0} q_{0}\right]^{1 / 2}\left\langle V_{i}(k, \epsilon\rangle\right| J_{j}^{\lambda}(0)\left|P_{k}(q)\right\rangle=g d_{i j k} \epsilon^{\lambda \mu \nu \rho} \epsilon_{\mu} k_{\nu} q_{\rho}
$$

etc., where $k$ and $\epsilon$ are the four-momentum and polarization of the vector meson and $q$ the momentum of the pseudoscalar meson. $\mathrm{SU}(3)$-symmetry breaking is introduced by using physical phase space in calculating the widths, which are given by, e.g.,

$$
\Gamma\left(\rho^{-} \rightarrow \pi^{-} \gamma\right)=\left(\frac{1}{96 \pi}\right)\left(\frac{g}{3}\right)^{2}\left(\frac{m_{\rho^{2}-m_{\pi}^{2}}^{2}}{m_{\rho}}\right)^{3}
$$

and

$$
\begin{aligned}
\Gamma\left(x^{0} \rightarrow \rho^{0} \gamma\right)=\left(\frac{1}{32 \pi}\right)\left[g \frac{1}{\sqrt{3}} \sin \theta_{p}+f\right. & \left.\left(\frac{2}{3}\right)^{1 / 2} \cos ^{\theta_{p}}\right]^{2} \\
& \times\left(\frac{m_{X^{0^{2}}-m_{\rho}^{2}}^{m_{X}{ }^{2}}}{m_{X}}\right)^{3}
\end{aligned}
$$

for decays of types (1) and (2), respectively.
${ }^{7}$ S. Coleman and H. J. Schnitzer, Phys. Rev. 134, B863 (1964).
${ }^{8}$ T. Das, V.S. Mathur, and S. Okubo, Phys. Rev. Lett. 18, 761 (1967); R. J. Oakes and J. J. Sakurai, Phys. Rev. Lett. 19, 1266 (1967).
${ }^{9}$ M. E. Nordberg, Jr., et al., Phys. Lett. 51B, 106 (1974) 。
${ }^{10}$ See V. Chaloupka et al. Phys. Lett. 50B, 1 (1974). Where possible, the results of Ref. 3 have been included in a statistically weighted average.
${ }^{11}$ S. Okubo, Phys. Lett. $\underline{5}, 165$ (1963); G. Zweig, CERN Report No. 8419/TH412, 1964 (unpublished); I. Iizuka, K. Okada, and O. Shito, Prog. Theor. Phys. 35, 1061 (1966).
${ }^{12}$ F. J. Gilman, Experimental Meson Spectroscopy, AIP Conference Proceedings No. 8, edited by K.-W. Lai and A.H. Rosenfeld (American Institute of Physics, New York, 1973), p. 460.
${ }^{13}$ A. Browman et al., Phys. Rev. Lett. 33, 1400 (1974).
${ }^{14}$ A. Browman et al., Phys. Rev. Lett. 32,1067 (1974).
${ }^{15}$ Chaloupka et al., Ref. 10.
${ }^{16}$ A. Bramon and M. Greco, Phys. Lett. 48B, 137 (1974).
${ }^{17}$ L. Strawczynski, Ph. D. thesis, University of Rochester, 1974 (unpublished).
${ }^{18}$ D. H. Boal and R. Torgerson, to be published.

