states or new production thresholds, or both.

*Work supported by the U. S. Energy Research and Development Administration.

†Permanent address: Cornell University, Ithaca, N. Y. 14850.

[‡]Permanent address: Laboratoire de l'Accélérateur Linéaire, Orsay, France.

[§]Fellow of Deutsche Forschungsgemeinschaft.

|| Permanent address: Laboratoire de Physique Nu-

cléaire et Hautes Energies, Université de Paris VI, Palaiseau, France.

[¶]Permanent address: Laboratori Nazionali di Frascati, Frascati, Italy.

**Permanent address: Centre d'Etudes Nucléaires de

Saclay, Saclay, France.

††Permanent address: Institut de Physique Nucléaire, Orsay, France.

‡1Present address: Carleton University, Ottawa, Ont. Canada K1S 5B6.

¹J.-E. Augustin *et al.*, Phys. Rev. Lett. <u>34</u>, 764 (1975).

²A. M. Boyarski *et al.*, Phys. Rev. Lett. <u>34</u>, 1357 (1975).

³V. Lüth *et al.*, Phys. Rev. Lett. <u>35</u>, 1124 (1975).

⁴J.-E. Augustin *et al.*, Phys. Rev. Lett. <u>34</u>, 233 (1975).

⁵J. D. Jackson and D. L. Scharre, Nucl. Instrum.

Methods 128, 13 (1975).

⁶J. Kogut and L. Susskind, Phys. Rev. D <u>12</u>, 2821 (1975); E. Eichten *et al.*, Cornell University Report No. CLNS-323, 1975 (to be published).

Observation of Two Strangeness-One Axial-Vector Mesons*

G. W. Brandenburg, R. K. Carnegie, R. J. Cashmore, M. Davier, W. M. Dunwoodie, T. A. Lasinski, D. W. G. S. Leith, J. A. J. Matthews, P. Walden, ** S. H. Williams, and F. C. Winkelmann[‡]

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305 (Bocoived 5 January 1976)

(Received 5 January 1976)

We present a partial-wave analysis of the $K^{\pm}\pi^{+}\pi^{-}$ system in $K^{\pm}p \rightarrow K^{\pm}\pi^{+}\pi^{-}p$ at 13 GeV. Evidence is given for the existence of two $J^{P}=1^{+}$ mesons: one at ~1300 MeV ($\Gamma \sim 200$ MeV) coupling principally to ρK and the other at ~1400 MeV ($\Gamma \sim 160$ MeV) coupling principally to $K^{*}\pi$.

An outstanding problem of meson spectroscopy is the lack of positive identification of the axialvector mesons other than the *B* meson.^{1, 2} The quark model predicts two octets of such states, the A_1 octet with $J^{PC} = 1^{++}$ and the *B* octet with $J^{PC} = 1^{+-}$. In this paper evidence is given for the existence of two strange axial-vector mesons, Q_1 and Q_2 , with masses of ~ 1300 and ~ 1400 MeV, respectively. The evidence comes from a threebody partial-wave analysis of data from a spectrometer experiment studying the reactions $K^{\pm}p$ $\rightarrow K^{\pm}\pi^{+}\pi^{-}p$ at 13 GeV.

Past searches for Q mesons in these reactions have been hampered by both experimental and interpretive problems. Previous partial-wave analyses³⁻⁵ of $K\pi\pi$ data have revealed no structure characteristic of resonance production, namely, comparatively narrow peaks in the mass spectrum accompanied by large phase variation. Statistics have limited these analyses to 100-MeV mass bins. The broad enhancements which have been observed in the 1⁺ $K^{*\pi}$ system³⁻⁵ may be qualitatively understood within the context of "Deck" models.⁶

The present experiment was performed at Stanford Linear Accelerator Center using 13-GeV rfseparated K^{\pm} beams incident on a 1-m hydrogen target. The spectrometer⁷ used to detect the $K\pi\pi$

system consisted of nine magnetostrictive readout wire spark chambers and a dipole magnet with a 17.6-kG-m field integral. The secondary particles were identified in a multicell pressurized Cherenkov counter oriented to detect preferentially the beam-charge K and π . The counter was filled with Freon 12 at 1.65 atm and gave K/π identification between 2.6 and 9.25 GeV. The data sample includes events in which the beam-charge K and π were identified (~ 50%) together with events with only the K or the π positively identified (~25% each). Events for the present analysis are selected by requiring that the missing mass recoiling against the $K\pi\pi$ system lie in the range 0.74 < MM < 1.10 GeV. The background within this interval is less than 5%. In the $K\pi\pi$ mass interval $1.0 \le m(K\pi\pi) \le 1.6$ GeV, there are 72 000 $K^{+}\pi^{+}\pi^{-}$ events and 56 000 $K^{-}\pi^{+}\pi^{-}$ events. For the much larger sample of $K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-}$ beam decays, used for apparatus efficiency studies and relative normalization checks, the 3π invariantmass resolution is 10 MeV full width at half-maximum.

At a given $K\pi\pi$ mass *m* and momentum transfer *t* (or $t' = t - t_{\min}$), the $K\pi\pi$ system is defined by five variables, $\omega = (\alpha, \beta, \gamma, s_{K\pi}, s_{\pi\pi})$. The Euler angles α , β , and γ describe the orientation of the $K\pi\pi$ decay plane coordinate system with respect

to a production coordinate system which is taken to be the *t*-channel system.^{8,9} The Dalitz-plot variables, $s_{K\pi}$ and $s_{\pi\pi}$, define the orientation of particles within the decay plane. The experimental data are not corrected for the spectrometer acceptance directly, but rather a model is made for the reaction, the effects of the spectrometer are introduced, and the result is compared with the experimental data through a maximum-likelihood technique. Acceptance here includes not only the geometrical acceptance of the spectrometer but also the effects of K/π identification criteria, resolution, apparatus efficiencies, secondary-particle absorption, and the cuts applied to the data. In general the apparatus provides good acceptance in the full range of ω .⁹

The isobar model^{8, 9} is used to describe the decay of the $K\pi\pi$ system. Each partial wave is described by the quantum numbers $J^P M^{\eta}$ Iso(*L*), where J^P is the $K\pi\pi$ spin and parity, *M* is the magnetic substate, η is the exchange naturality, Iso denotes the isobar $(K^*, \rho, \kappa, \epsilon)$, and *L* is the orbital angular momentum between the isobar and the remaining π or *K*. The isobars are in turn described by measured *s*- and *p*-wave $K\pi$ - and $\pi\pi$ -scattering phase shifts.

The differential cross section at a given $K\pi\pi$ mass *m* and *t'* is

$$\frac{d^{\prime}\sigma}{dm\,dt^{\prime}\,d\omega} = \sum_{n} \left[\left| \sum_{i} N_{i}^{\eta} X_{i}^{\eta}(\omega) \right|^{2} + \left| \sum_{i} F_{i}^{\eta} X_{i}^{\eta}(\omega) \right|^{2} \right],$$

where *i* runs over all necessary waves and $X_i^{\eta}(\omega)$ is the decay amplitude.^{8, 9} N_i^{η} and F_i^{η} may be identified with nucleon helicity-nonflip and -flip amplitudes only up to a unitary transformation which leaves the differential cross section unchanged.^{9, 10} Results are given for the acceptance corrected cross section of a wave and its phase, φ_{rel} , as measured relative to $1^+0^+ K^*\pi$.

The helicity nonflip waves used in this analysis were 0⁻0⁺, 1⁺0⁺, and 1⁺1⁺ coupling to each of the four isobar channels in the lowest allowed *L*; $2^{+}1^{+}K^{*}\pi$ (*D*); and $3^{+}0^{+}K^{*}\pi$ (*D*) above 1.43 GeV. The helicity flip waves were $1^{+}0^{+}$, $1^{+}1^{+}\rho K$ (*S*), and $1^{+}0^{+} \epsilon K$ (*P*). The only η odd wave was $2^{+}0^{-}$ $K^{*}\pi$ (*D*). This wave set was arrived at by an iterative procedure in which many other waves were studied using the K^{+} data in all mass bins. Only those waves giving significant increases in likelihood were retained.⁹

The results presented here correspond to an analysis of the data with ~ 3000 events in each mass interval for $|t'| < 0.3 \text{ GeV}^2$. In each bin, searches for the parameters N_i^{η} and F_i^{η} were made for the K^+ and K^- data independently. In

FIG. 1. Observed and corrected mass spectrum and principal total J^P contributions. The right-hand scale refers only to the observed spectrum; the left-hand scale, only to the corrected spectrum.

general, unique values for these parameters were found, with the exception that for the $K^$ data in the range $1.14 \le m(K\pi\pi) \le 1.25$ GeV, a restricted continuum of values was found. None of the conclusions made below is seriously affected by this ambiguity. In particular, the total cross section and total J^P contributions are in no way affected.

The observed mass distributions are shown in Figs. 1(a) and 1(b); a significant break is seen at ~ 1.28 GeV. The points give the corrected cross section obtained by summing the contributions of all the waves present. In Figs. 1(c) and 1(d), the contributions of each J^P state are shown. Spin and parity 1⁺ dominates the reaction over most of this mass region and accounts for the gross structure observed. The 0⁻ contribution becomes important at higher masses. In the region of the $K^*(1420)$, a small but distinct 2⁺ signal is seen. It is only ~ 5% of the total cross section at this mass.

The intensity and relative phase of the principal $K^*\pi$ and ρK waves with $J^P = 1^+, 2^+$ and $\eta = +1$ are shown in Figs. 2 and 3. For regions of $m(K\pi\pi)$ where the intensity of a wave is small ($\leq 20 \ \mu b/$ GeV³) and susceptible to fluctuations in measurement, its phase information in unreliable. The line shape of the $2^+1^+K^*\pi$ wave shown in Figs. 2(e) and 2(f) is well described by nominal mass and width parameters for the $K^*(1420)$.² Furthermore, the observed $K^*(1420)$ cross section is in excellent agreement with that expected from experiments detecting the $(K\pi)^{\pm}$ decay mode.^{2, 9}

The $1^+ K^* \pi$ waves are shown in Figs. 2(a)-2(d). There are significant differences between the K^+

FIG. 2. Mass dependence of the 1^+0^+ , 1^+1^+ , and 2^+1^+ $K^*\pi$ waves. The phase, φ_{rel} , is measured with respect to $1^+0^+ K^*\pi$. The shaded area indicates the range of ambiguity.

and K^- data. In the $1^+0^+ K^*\pi$ waves, there are clearly two peaks in the K^- data but only a peakshoulder structure in the K^+ data. The higher mass peak in the K^- data occurs at ~1380 MeV, well beyond the ambiguous region. As seen in Figs. 2(e) and 2(f), there is little phase variation ($\leq 45^\circ$) of the $2^+1^+K^*\pi$ wave in the vicinity of 1420 MeV. The $1^+1^+K^*\pi$ waves are significant in the 1200-MeV region, but are $\leq 10\%$ of the 1^+0^+ $K^*\pi$ waves in intensity, indicative of *t*-channel helicity conservation for the $1^+K^*\pi$ waves.

In the 1⁺ ρK system (Fig. 3), peaks of width ~ 200 MeV are observed in all waves at ~ 1280 MeV. Furthermore, there are pronounced phase variations: a forward motion of ~ 70° for 1.20 $< m(K\pi\pi) < 1.35$ GeV and a backward motion of ~ 50° for 1.35 $< m(K\pi\pi) < 1.45$ GeV. The ratio of 1⁺1⁺ ρK to 1⁺0⁺ ρK (~ $\frac{1}{3}$) is certainly *not* indicative of *t*-channel helicity conservation.^{4,5} The measured coherence between the ρK and 1⁺0⁺ $K^*\pi$ waves is ~ 0.75 for the entire $K\pi\pi$ mass range.⁹

FIG. 3. Mass dependence of the 1^+0^+ and $1^{+}1^+ \rho K$ waves. The phase, φ_{rel} , is measured with respect to $1^+0^+ K^*\pi$. The shaded area indicates the range of ambiguity.

These features may be explained qualitatively in terms of two 1⁺ resonances, Q_1 at ~1300 MeV coupling principally to ρK and Q_2 at ~1400 MeV coupling principally to $K^{*\pi}$, and a "Deck" background peaking at ~1200 MeV in the 1⁺ $K^{*\pi}$ system. The evidence for such an interpretation is summarized as follows.

(a) There are comparatively narrow peaks in the partial-wave mass spectra. Q_1 has a width of ~200 MeV and Q_2 , a width of ~160 MeV. Such narrow peaks are not expected to result from "Deck" mechanisms.

(b) The large forward phase variation of the ρK waves would correspond to a resonance if the reference wave were approximately constant in phase. This would be the case if a significant background were present in $1^+ K^* \pi$ and/or the Q_1 coupling to $K^* \pi$ were small.

(c) The suppressed phase variation of $K^*(1420)$ relative to $1^+0^+ K^*\pi$ would indicate that this reference wave is also executing a Breit-Wigner phase variation in the region of 1400 MeV. In addition, if Q_2 couples weakly to ρK , a backward phase motion for the $1^+\rho K$ waves would then be expected.

(d) The residual low-mass peaks in $1^+ K^{*\pi}$ may be associated with a "Deck" background. Indeed

little phase variation is observed between $1^+ K^* \pi$ waves and the structureless $0^- 0^+ K^* \pi$ wave⁹ as expected of "Deck" mechanisms.⁶

The large increase in statistics of the present experiment has allowed a partial-wave analysis to be performed in much finer mass intervals, revealing distinct structure heretofore undetected. In particular, intensity and phase variations with widths ≤ 200 MeV have been observed. These effects may be interpreted as due to the existence of two 1⁺ mesons Q_1 and Q_2 , in accord with the multiplet structure implied by the quark model. These states would presumably be mixtures of Q_A and Q_B , the octet partners of the A_1 and B.

*Work supported by the U.S. Energy Research and Development Administration.

†Now at Physics Department, Massachusetts Institute of Technology, Cambridge, Mass. 02139.

[‡]Now at Physics Department, Carleton University, Ottawa, Ont., Canada K15 5B6.

[§]Now at Physics Department, Oxford University, Oxford, England.

|| Now at Laboratoire de l'Accelerateur Lineaire, Or-

say, France.

¹Now at Physics Department, Michigan State University, East Lansing, Mich. 48823.

**Now at TRIUMF, University of British Columbia,

Vancouver, B. C., Canada V6T 1W5. ¹R. Eisner, in *Experimental Meson Spectroscopy*

-1974, AIP Conference Proceedings No. 21, edited by D. Garelick (American Institute of Physics, New York, 1974).

²V. Chaloupka et al., Phys. Lett. <u>50B</u>, 1 (1974).

³Yu. Antipov et al., Nucl. Phys. <u>86B</u>, 365 (1975).

⁴S. Tovey et al., Nucl Phys. <u>95B</u>, 109 (1975).

⁵G. Otter et al., Nucl. Phys. <u>93B</u>, 365 (1975).

⁶E. Berger, in *Proceedings of the Daresbury Confer*ence on Analysis of Three-Particle Phase Shift Analysis and Meson Resonance Production, 1975, edited by J. Dainton and A. J. G. Hey (Daresbury Nuclear Physics Laboratory, Daresbury, Warrington, Lancashire, England, 1975); G. Ascoli et al., Phys. Rev. D <u>8</u>, 3894 (1973).

⁷G. Brandenburg *et al.*, to be published.

⁸D. Herndon *et al.*, Phys. Rev. D <u>11</u>, 3165 (1975).

⁹G. Brandenburg *et al.*, to be published.

¹⁰This parametrization permits the measurement of spin coherence and the imposition of rank conditions in a manner similar to that of S. U. Chung and T. L. Trueman, Phys. Rev. D <u>11</u>, 633 (1975).

Production Properties of Q Mesons in $K^{\pm}p \rightarrow K^{\pm}\pi^{+}\pi^{-}p$ at 13 GeV*

G. W. Brandenburg, † R. K. Carnegie, ‡ R. J. Cashmore, § M. Davier, || W. M. Dunwoodie, T. A. Lasinski, D. W. G. S. Leith, J. A. J. Matthews, ¶ P. Walden, **

S. H. Williams, and F. C. Winkelmann[‡]

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

(Received 5 January 1976)

The momentum transfer (t') dependence of the $J^P = 1^+ K^*\pi$ and ρK partial waves in the $K^{\pm}\pi^+\pi^-$ system is presented. The production of the Q_1 meson $(m \sim 1300 \text{ MeV})$, which has a large ρK decay mode, obeys approximate s-channel helicity conservation. In contrast the production of the Q_2 meson $(m \sim 1400 \text{ MeV})$, which decays predominantly to $K^*\pi$, satisfies approximate t-channel helicity conservation. Furthermore the Q_1^{\pm} production distributions are virtually identical, whereas the Q_2^{\pm} distributions exhibit a distinct crossover for $|t'| \sim 0.18 \text{ GeV}^2$.

In the previous Letter,¹ the results of a partialwave analysis investigating the spin and parity structure of the $K\pi\pi$ system were presented as a function of mass for the reactions

$$K^{\pm}p \to K^{\pm}\pi^{+}\pi^{-}p \tag{1}$$

at 13 GeV. Definite structure was observed in the intensity and phase variation of the 1⁺ partial waves and was interpreted as evidence for the existence of the two strange 1⁺ Q mesons expected from the quark model. The Q_1 meson at ~1300 MeV was observed to have a large ρK decay, while the Q_2 meson at ~1400 MeV decays predominantly to $K^*\pi$. In addition, a large low-mass peak in the 1⁺ $K^*\pi$ system near 1200 MeV was ascribed to a "Deck" mechanism.

In this Letter the t' dependence of the partial waves associated with these structures in the mass spectrum is presented. The production properties are studied in three regions: Region (I),

 $1.16 < m(K\pi\pi) < 1.28 \text{ GeV}$,