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The nonlinear 0 model is renormalizable and asymptotically free in two dimensions.
We show here how to construct this model in 2+ e dimensions. Renormalization-group
equations follow and exhibit a nontrivial uv stable fixed point, which corresponds in the

language of Heisenberg ferromagnets to a critical point. The existence of systematic
expansions in powers of d-2 follows from this analysis. In the presence of a source in-
formation about long-distance behavior above the critical coupling constant is obtainable.

Recently Migdal' and Polyakov' have discussed
the behavior near two dimensions of an n-com-
ponent scalar field coupled through an O(n)-in-
variant interaction. ' We shall show how to re-
cover and generalize their results using standard
field-theoretical methods. For this purpose we
shall construct a renormalizable nonlinear 0

model in 2+a dimensions as a power series in e.
The main feature of this construction is that the
resulting theory is, as noted by Polyakov, asymp-
totically free in two dimensions. ' The same con-
siderations would apply to any such situation, as
for instance the Thirring model with internal
symmetries, or non-Abelian gauge theories in
4+ e dimensions.

For statistical mechanics the nonlinear 0 mod-
el describes the infrared properties of the n-

component classical Heisenberg ferromagnet as
obtained from the low-temperature expansion.
A renormalization-group equation similar to
those derived around four dimensions' holds thus
for these systems in 2+& dimensions. Its inte-
gration describes the critical scaling behavior
with universal parameters given as e series.
The same Heisenberg system may thus be de-
scribed above two dimensions by two different
field theories, namely the linear and the nonlin-
ear 0 models, which are therefore presumably
identical in the neighborhood of the fixed point.

Renormalization of the nonlinear o model in
~+& dimensions. —The theory will be defined or-
der by order in e. The generating functional of
the Green's functions in Euclidean space is writ-
ten in terms of a o field and n-1 Goldstone fields

n-&

g = do d" 'm 5 + m' —1 exp — d x 8&0 + 8pj +J ~ p
j=l

in which T is a dimensionless coupling constant (proportional to the temperature in the analogous Heis-
enberg problem). A regularization is meant, which should preserve the O(n) symmetry. It can be ob-
tained through the Heisenberg model on a lattice with spacing 1/A and nearest-neighbor interactions:

Z = g Q, [der, d" '
zT, 5 (o,'+ p,

' —1)] exp [T '(Q'(v, o&+ m, zT&) +Q, J,.m,] ],
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which gives a finite meaning to the invariant measure IT„5(v'+m' —1), restricts the momentum inte-
grals to the zone —mA&p & mA, a=(1, . . . , d), and uses as inverse p'ropagator

2A' Q [1-cos(p /A)].

Conversely if one starts with the Heisenberg model in the low-temperature expansion derived from (2)
by integrating first over the o field and performing then a loop expansion, one discovers in the infra-
red limit a regularized form of the nonlinear o model.

Let us perform now the power counting of the primitive divergences. Since the canonical dimension
of the field is —,(d —2), the dimension of the 2N-point interaction vertex, obtained by expanding [8„(1
—7')' ']', is N(d- 2)+2. . Each finite order of the loop expansion involves only a finite number of ver-
tices of the Lagrangian. Therefore for d —2 small enough, the theory can be renormalized by sub-
tracting twice each Green's function. Thus the most general counter terms are arbitrary local func-
tions of the m field with at most two derivatives. Furthermore the regularization preserves the chiral
invariance, hence the renormalized Lagrangian possesses this invariance. These two conditions fix
the renormalized Lagrangian to be

i.e., all infinities may be absorbed in a field-strength and a coupling-constant renormalization. The
parameter p. fixes the scale of the renormalized theory.

Renormalization-group equations. —The vertex functions of the a and w fields' satisfy the equation

r &»(T„q)=z~'r&N&(r, A),

from which follows by differentiation with respect to A, at fixed T„and p. ,

with'

+ w(r) —g(r ) r&»(r A) =0
8A BT 2 (4)

g(r) =-A(81~/sA)~„

W(r) =A(sr/aA)~, .
These equations are sufficient for statistical mechanics'; for field theory it is more convenient to
write the renormalization-group equation for F„'"':

(6)

+ w(r~)

If one deals with external o lines it is easier to calculate the connected G'"' rather than the vertex
functions I'"'. They satisfy

A + W(T) +—g(T) G'» (T, A) = 0 .

It remains to calculate the coefficients W(T) and g(T) at lowest order. A one-loop (o.l.) calculation
of the spontaneous magnetization o(T) gives

o(T) = (a), , =1 —(n —1)T/4m(d-2),

in which we have used

J d dP 1 1
(2 )" ~, 2(1 —cosP ) 2 (d —2)

At the same order the 7tn vertex function is

~2&" =5 8
p' 1+T +O((d-2)o)

692



Vor.vMz 36, NvMszR 13 PHYSICAL REVIEW LETTERS 29 MARCH 1976

Equations (4), (7), (8), and (10) fix the one-loop contributions to W and f to be

&(T) = [(n —1)/2w] T+ O(T', T(d —2)),

W(T) =(d-2)T- (n —2)T'/2n+O(T', T'(d-2)).
Thus for n& 2, d& 2 there is an uv stable fixed point

T, =2m(d- 2)/(n —2)+O((d —2) ),

(12)

which is the critical temperature of the Heisenberg model. '
Scaling behavior. —The renormalization-group equations (4) and (7), together with the canonical di-

mension d of the I'"', lead to the scaling property'

1"'"'(P, T, A) =( '(T)o "(T)~'"'0 ((T))

in which we have used a correlation length

]/(g 2) g
I((T) =

~
T exP dT (~) (d- 2)T')

and a spontaneous magnetization

o(T) = ( o) = exp [- ,'f —g(T')d T'/ W(T') J .

(14)

(15)

(16)

Formulas (14)-(16)hold for T& T,. The exponents of the Heisenberg model follow from these formu-
las. From (5) and (6) we find

g(T)-(T, —T) "with v '=- W'(T, ),
o(T) -(T.—T)' with P =- r„(T,)/2W'(T, ).

At one-loop orders one finds

(n- &) /2(n- 2) n

C

5(T)=50(T, /T-1) '~" ", i.e., v '=d —2+O((d-2)').

(17)

(18)

(19)

(20)

Formulas (19) and (20) re-sum the leading singularities in d- 2 to all orders in T. At next order the
results are

—= d —2 + + O((d —2)'),
(d-2)'

V n-2

7i = —,(d —2)'+ O((d —2)').d —2 (n —1)
n- 2 (n —2)'

(21)

(22)

These expressions are valid for T& T, and the domain of applicability vanishes when d goes to 2. It
is thus important to be able to continue the theory above T,.

The coefficients W(T) and f(T) of the renormalization-group equations are regular at T„and there-
fore the Green's functions have the same scaling properties above T,. In order to calculate explicitly
the scale invariant functions above T„ it is necessary to introduce a new interaction of the cr field with
an external magnetic field II, which gives a mass to the Goldstone bosons. Then the correlation func-
tions become regular at T, and have a finite limit when H goes to zero above T,. This combined use
of an external source together with the renormalization-group equation allows one to go into the phase
in which the symmetry is not spontaneously broken. From the correspondence with the Heisenberg
ferromagnet, we know that the infrared singularities lead to a "phase transition" characterized by a
restored symmetry with the generation of a mass for the pion and the 0 particles. This mass can be
calculated from the renormalization-group arguments and is given by"

m=$ '(T)=Aexpf dT'/W(T').

It seems possible to reach the limit d =2 by this method. This implies that if one discusses situations
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of particles which have masses «A, the bare coupling constant T is of order 1/lnA.
The renormalization«group equation for the magnetic field expressed in terms of the magnetication

reads

zg(T)M + ~T) - +—+ —d II(M, T) =0.~ ~(T)
(23)

Its solution can be written

(24)

which exhibits the scaling behavior near T, together with the Goldstone singularities. A one-loop cal-
culation yields this relation in the form

M '~~ IIo T 4T
(25)

In conclusion we would like to point out that the method presented here may be systematically extend-
ed to all orders in d —2, giving new expansions for the exponents and the scaling functions. It gives a
combined treatment of the critical and Goldstone-like singularities. It gives an extension to higher di-
mensions for any asymptotically free theory. It may allow one to study the infrared problem in an
asymptotically free theory although perturbation theory cannot be directly applied.
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