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A confined magnetic flux solution of finite length and finite energy, arising from non-
Abelian-gauge theory, is presented.

An interesting possibility for a quark confine-
ment mechanism which gives rise to a hadronic
stringlike structure has been proposed by Nielsen
and Olesen' and further developed by Nambu. '

The first-named authors rediscovered the quan-
tum flux line which threads its way through a su-
perconductor, identifying it with the dual string.
A mechanism of flux-line termination through use
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of Dirac monopoles' was then proposed by Nambu.
The important point is the compatibility of the
magnetic monopole and flux-line quantization.
The former radiates a total amount of flux which
can be exactly channeled into the flux line. The
ends of the string are then a monopole-antimono-
pole pair, presumably a model for mesons. Bar-
yons are yet to be constructed.

The present work is designed to produce the
Nambu confinement scheme through classical fi-
nite-energy solutions of non-Abelian-gauge field
theory. No recourse is made to Dirac monopoles.
Instead we have used 't Hooft's result, namely
that monopoles occur as fundamental solutions in
non-Abelian-gauge field theory' [in his example
SU(2)]. In this first step there are two massive
and one massless gauge fields, the latter preclud-
ing the existence of flux lines. How to get flux
lines in non-Abelian theory is shown in the Appen-
dix of Ref. I where two (or more) isovector sca-
lar mesons are introduced having noncollinear ex-
pectation values in isospin space. Such a theory
has three massive gauge vector mesons. The
question is then posed: Is such a field theory
possessed of monopoles as well and if so, can
the Nambu confinement scheme occur~ In this
paper we produce the affirmative answer.

In order to communicate our result in under-
standable and physical terms we have deemed it
essential to review the various building blocks
which have been incorporated into our construc-
tion (and thinking). We shall therefore present
first Nambu's and 't Hooft's results in a manner
cogent to our purpose and then the multiscalar

c ~, ezp(- p „lr —r'I)
A = — ds'x'»»' —

I
(2)

where the integral is taken along the string singu-
larity. For a monopole-antimonopole pair, the
lower limit in (2) is taken at the position of the
antipole, b. From (2) one calculates B to be

model leading to magnetic flux confinement.
(I) The Nambu model. —Here as throughout, we

shall look for static solutions. A Dirac monopole
at the point a can be introduced in the gauge V A
=0 by the following singular solution' of ~A =0:

A =(4'/4~)f ds'xv( I-/Ir-r'I),
(I)

B —= pxA =(4»/4v)(r- r)/Ir-r, l',

where the integral is taken along an arbitrary
semi-infinite line (Dirac string). Nonobservabil-
ity of the string in quantum mechanics requires
the Dirac quantization condition C' =2mn/e

In the presence of a superconductor, the cur-
rent J = —ie[y*VX —(Vy")g] + 2e' I y I'A is the source
of A; y is the complex order parameter I y I

x exp(-iv) which can be viewed as a complex
scalar field. Far from an electromagnetic dis-
turbance, IyI tends to a constant value, Idol, on
the scale of p, ' (g, is the scalar mass). In this
paper we take p „« IU., when p „ is the vector mass
(p. „'=2e'lyoI2). We refer to the "London approxi-
mation" as the neglect of O(p. „/p.,); in this ap-
proximation J = p „'[-»»»'u&/e+A]. A combined mon-
opole-flux line can then be constructed explicitly
from a singular solution to &A = J; the result in
the gauge where y is real is'

B=(e/4~)E I „'J'ds exp(-I „lr-rl)/Ir- r'I+VI- ezp(- I „lr-r, l)/Ir-r, ll

—& I:—exp(- u. lr —r, l)/Ir - r, l 1],

V B=C[b'(r-rg —&'(r-r, )].
Around each pole the flux emerges or recedes
spherically up to a radial distance of p„' where-
upon it becomes canalized into a flux line of di-
ameter p „'which flows between the poles.

It is instructive at this point to dwell upon the
laude properties of (2) and (3). One may write
A =A„&+A where from (I) and (2) we have A„z
=(C/@ )f'ds'xv'f[l —exp(- p„Ir —r'I)/Ir —r'I].
A„g generates a conserved flux 4' which is ab-
sorbed outside the flux line by the poles due to
A . Thus we may replace A by A ' evaluated
along another Dirac string. It is easily shown

D»G»r J» -Z4

xaam—

~» (4)

where for any isovector v, D,v =—&,v -gA~&&v and

G„) -—8)A„—8~A, +gA~x A, ;

I that the difference e[A ' —A ] is equal to the gra-
dient of a function which then can be identified
with w, the phase of y.

(2) The 'i Hooft monopole. —In the presence of
an isovector scalar field the SU(2) gauge static
equations are (0, I, and m, space indices; a, b,
and c, isospin indices; v denotes a space vector,
u an isovector)
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V is a potential. Following Arafune, Freund, and
Goebel, ' a convenient method for finding monopole
solutions is obtained by working in the "Abelian
gauge,

" the latter defined by g being unidirection-
al in isospace, say the c direction. One sees
from (4) that a singular solution describing a
monopole at the origin is then obtained by setting
(, = constant=E, the massive components A, =A,
=0, and A, =A„as given by (1) where we take the
string along the negative & axis. Perform now a
gauge transformation to the "spherical gauge"
g' =Qg; t.A' =t A+(i/g)Q 'VQ; 0 =exp(-iyt, )
exp(-i8t, ) exp(ipt, ). One obtains g'=(r/r)F with
r identified to r, 2,„' = &„„r,/gr' provided 4'=4&/g.
This is 't Hooft-'s quantization rule; in this case
the string singularity has been eliminated by can-
celation against the gauge term (i/g)P 'VA and
one is left only with a singularity at r =0. A reg-
ular solution displaying finite energy may now be
constructed by introducing form factors a (r) and
f(r), namely, (' =(r/r)Ff(r) and A„' =c„,(r,/gr')
xa(r); these are determined from (4) and the
boundary conditions

lim f(r) =a(r) =1

and f(0) =a(0) =0. The latter condition is required
for the finiteness of the energy. The solution in
an idealized limit is a(r) =1 —pr/sinh(pr), f(r)

ctoh(pr) —1/.pr (p =gE). Thus the regular so-
lution departs from the singular one within p,

'
of the origin. The crucial point is that the intro-
duction of the form factors has not modified the
pointlike character of the monopole. This is eas-
ily seen by writing the gauge-invariant magnetic
field in the form'

A A ~4

FIr =s~Da-saD~ -g 'ksakxs~k;

0=k A' k. =R/~k~

with three y; (i =1,2, 3) wherein V(y&) is permu-
tation symmetric. The i,agrangian is (static
case)

L = —'(D. V~) (D~«) —-'&s~ &~~ —~(V~) (6)

The natural fields with which to work are the lin-
ear combinations which form bases of the irre-
ducible representations of the permutation group.
These are g = (1/~3) (y, +y, +,) [singlet] and
the complex doublet y = (1/W3) y, + exp(2~i/3)y,
+exp(4iTi/3)y, ]. The detailed choice of V is with-
out importance, the relevant point being that its
minimum leads to a symmetric pyramidal ar-
rangement as depicted in Fig. 1 where the sym-
metry axis is chosen to be c. The minima are
then (,= (,= 0, $ = $, =~SE coen; X,, = 0, y' = (1/+2)
x (y~+iy~) = Oq g = g = (1/~2)()(~ —2gy) =WgE sino!
x exp(- is&). For example,

I'=-k& '(0 0+2X* X)+k&(4 0)'+~'4* X)' (I)

Then tan'n =&/A. ', a parameter ranging from 0 to

The equations for A are of the form (4) where
J, =g[px D, g+gx D,y*+X*xD,y]. The vector
meson mass matrix arises from the linear term
in A in J. One readily deduces that its eigenvec-
tors are in the transverse a-b plane (twofold de-
generate) and in the longitudinal c direction with
masses given by pr'=3E'g'(1 —sin'o.'/2); y, ~'
= 3E'g' sin'o. , respectively.

We now construct a monopole-flux-line solution
by letting the fields vary in space keeping the py-
ramidal symmetry. First select an "Abelian"
gauge where g points everywhere in the c direc-

In the spherical gauge the magnetic monopole
field entirely originates from the second term
and is independent off(r) and a(r).

A dipole can be similarly constructed in this
model with the B lines of force of a convention-
al dipole and hence unconfined" [the relevant
gauge transformation' is now 0' =exp(-iyt, )
x exp(-i5t, ) exp(iyt, ), where 6 is the angle from
which the dipole is seen]. In order to have a con-
fined solution the isospin component of A parallel
to Q must pick up a mass. This is achieved as
follows.

(3) The multi scalar mode/. —Following the ap-
pendix of Ref. 1 we introduce more than one iso-
vector scalar. A convenient choice is to work

FIG. 1. Pyramidal symmetry of the fields at the po-
tential minimum [ cp&(

=
( p[ = [~( = I
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tion. It is easily checked once more that the
equations of motion of G,» and G»& contain terms
having at least one factor of A„and/or A», more-
over A, » does not enter the equation for g. Thus
we look for a singular solution by setting first A,
=A, =O; g=-g, =constant=~SE(r) cosa(r). The re-
maining equations are [from (6) and (7) ]

&A, = —ig[y*&y —(&y, *)y]+2g'I pl'A„(8)
~V

(~ +&aA.)(& +&uA.)x = I.x.
~IX

Equations (8) and (9) are our central result since
they permit the construction of a singular solu-
tion to (8) which has all the properties of the
Nambu model. In fact in the London approxima-
tion, the result (2) is recovered for A, with the
identification p. „=p~, in a gauge where X is real.
The exact singular solution to (8) and (9) exhibit-
ing a monopole of order n differs from the Lon-
don approximation in two important respects.
(a) The reguiargart of A, in the decomposition
A, =A„,«+A [A given by (1)] now leads to a fi-
nite 8 field along the string instead of the loga-
rithmically divergent result (3); the cutoff is pro-
vided by the mass m„of the y field. ' (b) Because
the string singularity remains in the exact solu-
tion, y, vanishes along the string (real gauge) as
seen from (9). This result implies that in any
Abelian gauge ly I vanishes along the center of the
flux line. In fact, taking a flux line centered
along the negative z axis, one can solve (9) in
the vicinity of the origin. One finds I y I- exp(~[(1
+2lnl)'" —11 Inr)(l+cosg)l~lh ~«p~ '. For
x&0, r» p~ ', and p«p& ' where p =(~'-z')'",
one can again solve (9) to recover the familiar
res~t' i y i- p~" ~

We now perform the gauge transformation to
the spherical gauge and this reduces again the
line singularity to a point singularity for n = 2,
corresponding to C' =4&/g or two units of quantum
flux. The B field due to A is carried by the sca-
lar term in (5) and we obtain A„,«=D. One can
now construct a regular solution as above which
tends to the singular one for distances r» p, ~ '.
This still does not affect the monopole fields and
modifies the D field in (5) in a smooth way. Once
more the infinite energy located at the pole is re-
moved. If tan'u «1 the picture given by Eq. (2)
and (3) will remain qualitatively correct except
for the logarithmic cutoff mentioned above. In ad-
dition, the shape of the form factor near the mon-
opole will be unaffected. If this condition is not
met the B field may be distorted but this will have

no effect in the region of the well-formed flux
line. At all events the differential equations for
the form factors are continuous in n, therefore
guaranteeing the existence of a solution with fi-
nite energy density.

Thus the 't Hooft monopole of finite energy now
becomes an infinite-energy phenomenon (since
the accompanying flux line is of infinite length).
However the dipole solution can be constructed
in a straightforward way using the gauge trans-
formation 0' to remove the string singularity.
The result is thus a confined solution with finite
energy. For l» p~ '» p, r ' (n «1), where I is
the distance between the two monopoles, this en-
ergy is roughly the sum of two terms: (a) mono-
pole mass terms of order' p, r/g and (b) a term
proportional to l arising from the flux line. ' We
do not discuss the stability of such a solution;
this would require taking into account the quan-
tized motion of the monopoles. Note however
that in the strong-coupling limit g» I, the small
monopole mass should prevent pair annihilation
into vector and scalar mesons.
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