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Gauge symmetry admits a local unit isovector and leads to the magnetic monopoles in
Weinberg's unified theory. I predict sin 0 =2 for the mixing angle ~ on the basis of Di-
rac s condition for charge quantization. This interesting result should be tested experi-
mentally.

The magnetic monopole has been shown to exist in certain non-Abelian gauge theories, excluding
steinberg's unified theory. " The magnetic charge follows from the topological structure of three
Higgs scalar fields in a three-dimensional space. '

Here, I wish to point out that one can always introduce a local unit isovector in a non-Abelian gauge
theory to substitute for the role played by the three Higgs scalars, so far as the magnetic monopole is
concerned. Thus, the requirement that the electromagnetic group be a subgroup of a larger group with
a compact covering, as in Ref. I, is not necessary for the monopole solution. ' In such a formulation
of the monopoles, the magnetic charge and its conservation have nothing to do with the topology of
Higgs fields and the dynamics of gauge fields. They are simply consequences of the local isospin gauge
symmetry. I get exact solutions for the vector gauge fields and show the presence of a stable mono-
pole with the magnetic charge e„=—sin8/ gin Weinberg's unified theory. On the basis of the Dirac con-
dition for charge quantization, the theory predicts sin'8 = —, for the mixing angle 9, which can be tested
experimentally.

In Weinberg s theory, the equations for the classical fields A&, B&, cp, and y are&'

8&A"" —gA"'&& A& + ig4t "Tp - igyt tC" = 0, (1)

~PB —2' P 4' +2' 4' +=09 (2)

8&4" —M, p+2hcptcpy —(igA ~ t+ ,'ig'B&)—4"=0, (3)

(p, '+Wax+ ip, ')/W2) '

8 V AP + gA~ X AV 9 +/V ~P@V ~ V+/ 9

c"-=8"y - ig A" tp - 2t'g'B" y, -
where the leptons have been neglected for simplicity. The photon field A& and the neutral massive vec-
tor field Z& are given by

a~ =a,~ sino+~~ cosS, Z" =43" coso —B sin0.

The mixing angle 0 and the charge e are given by

tan8 = g'/g and e = —g sin8.

We are interested in the nontrivial solutions for the vector fields A," and B". The scalar fields have
obviously the following trivial solutions:

y'=0, p, '= 0, y, '= -W2Z = —2&2M.~/g,

where M~ is the mass of W'" =(A.,"+iA,")/2't . We look for the static spherically symmetric solution
of the form'-

B =0
9

B' =v'B(r), i = 1,2, 3,

Ao'=v'Ao(r), A =e„,v A(r), v =r /r, i,a, b=1, 2, 3, (7)

(6)

where v~ is a local unit isovector. Equations (2) and (3) are satisfied by the solutions (6) and (8) with

646



VOLUME 36, NUMBER 12 PHYSICAL REVIEW LETTERS 22 MARcH 1976

arbitrary B(r). Equation (1) reduces to

r' d'A/dr' +2r dA/dr -A (1+grA)(2+ grA) + grAO (1+grA) = 0,

r' d'A, /dr' +2r dAO/dr —2AO(l + grA)' = 0.

The special "particlelike" solution to (9) is

A(r) =E/gr, A0=0, E = —1, —2,

(9)

which has singularities of the Coulomb form. We also have the following singularity-free solution for
an SU(2) gauge field,

A(r) = (R —sinhR)/gr sinhR, R = pr, p real,

A, (r) = i(R coshR —sinhR)/gr sinhR.
(10a)

Note that if P is complex with HeP e 0, then (10a) is also a solution.
To understand the meaning of the classical solutions, me define a generalized electromagnetic field

tensor F» with the help of a local unit isovector v'(x&):

F» =v'A»' sm8+B» cos8 —(szn8/g)e' 'v' {D&v )D„v', (ll)
D~v = B~v + gf Ap v, v (xp)v (xp) = l.

As usual, the definition (11) is invariant under SU(2) SU(1) gauge transformation and E&„becomes the
usual electromagnetic field tensor E» = B&A, —B„A&, A" =A," sin8+B" cos8, when v' = (0, 0, 1).' Note
that the unit isovector v in (11) can be a function of space-time in general because of the local isospin
gauge symmetry. ' Since v'v' = 1, we can rewrite (ll) as

F„„=[B„(v'A„')—B„(v'A„')]sin8+B„„cos&—(sin8/g)f"'v' B„v' B,v'.
The electric and the magnetic fields, E,. and II~, are given by

(13)

It follows from (7), (6), (10), (12), and (13) that

H = —r sin8/gra, E = 0. {14)

The total magnetic flux is —4m sin8/g. Thus there is a stable magnetic monopole at r =0 with the mag-
netic charge

e = —sin8/g.

From (5) and (15) we obtain

(15)

ee = sin'0.

The Schwinger condition' ee„=1 and (16) give the result cos8 = g =0 and, therefore, it is incompatible
with the theory because one must have gt 0 and g 0. The only charge-quantization condition compat-
ible with (16) is the Dirac condition' ee =-„which leads to the interesting result

san 8 =-,'. (17)

This implies a universal coupling, g = g', for the vector fields A," and B" in %einberg's theory.
Moreover, (17) leads to M ~' = ~~'/2 = e'/2W2G~ and the total effective e-v interaction (G ~/~2) vy& (1
+y, )vey (—,+—,y, )e. Thus, arbitrary features in Weinberg's theory are largely removed. The predic-
tion (17) is consistent with the average value of various experimental results. " The prediction should
be further tested. I stress that these unambiguous predictions in steinberg's theory are made on the
basis of simplicity and beauty in equations derived from the concepts of local gauge symmetry and
charge quantization. In view of the present technical difficulty" in testing (17), one should not allow
oneself to be too discouraged simply because there is not complete agreement between (17) and some
experiments, e.g. , the reactor experiment v, +e -e+ v, ."
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The magnetic current j~ and the electric current jz' are related to E&, by

m &~ 8p~p&
Xppv

and

(18)

jx ~ +xp~ (19)

which are obviously conserved: 8 jz =8 j~' =0. When the vector fields A," and B" are free from
line singularity, we have'

e~'"s [s„(v'A,') —s„(v'A„'}+B„B„—B„B„]=0,

and the magnetic current jz takes the form

(20}

j~ =-( sin8/2g)e"'e„~»( 8~v')( e~ v')8' v'. (21)

It can be seen that the magnetic charge (1/4m) fj, d'r and its conservation are direct consequences of

the local isospin gauge symmetry"" which admits the local unit isovector v'(x„) in the theory. " In

general, (21) with a time-independent v {r) implies that the magnetic charge must be an integer in units
of —sin8/g. The general Dirac condition ee =n/2 is satisfied if and only if (17) holds.

The value of the magnetic monopole mass M is of course very important for experiment. The solu-
tions (8), (8), and (10) lead to the energy E or the monopole mass

=E = — gd3y =
0, Z=-2, (22a)

(22b)

4F " d pR coshR p coshR pR p 477
ig', 0 dr sinh'R sinhR sinh R R g

where the arbitrary constant p has the dimension of a mass. According to the variational principle,
we expect the finite-energy solution to exist even if A, =0." Let us consider the simple case where Ao

=P„=~,=h =0, while &,'/h may not be zero With th. e help of an arbitrary parameter m with the di-
mension of a mass, we may write E as

4m, "" dX ' (A'+2A)' (xdy/dx —~)' q'(A+2)'
2 Rl t&

d
+ '2 2 +

2 2 +
g „p — X x

(24a)

for the static monopole system. The physical monopole probably could have a nonzero mass as a re-
sult of quantum corrections to (22a). The singularity-free solution (10a) does not have a simple physi-
cal interpretation because A, is imaginary. Yet the exact solution (10a) with P real is interesting for
it leads to a finite energy:

= (4m/g') mI, (24b)

where the dimensionless quantities x, A, and y are given by x = mr, A =e'"(r'/r) m 4/xg, and y'
= (r'/r) mp/xg. The quantity I is the minimum value of (24a) and can be found by computer calcula-
tions, using trial functions and adjusting their parameters. The numerical value of I is not important
physically because m in (24b) is arbitrary and therefore E cannot be determined at the classical level.

To conclude, in contrast to 't Hooft's formalism' I have given a formalism in which the local gauge
symmetry admits a l'ocal unit isovector and leads to the magnetic monopole with a finite mass in Wein-
berg's unified theory. In general, the properties of the monopole in SU(2) U(1) theory are not neces-
sarily exactly the same a,s those of the monopole in U(l) theory or SU(2) theory. For example, quan-

tized monopole strength e = 1/e, derived from the SU(2) symmetry group, does not necessarily apply
to Weinberg's theory. '~ The possibly existing monopole should be searched for experimentally with-
out preconception, especia, lly if the prediction (17) is confirmed. "

*Work supported in part by the U. S. Atomic Energy Commission |'noir U. S. Energy Research and Development

Administration) .
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A confined magnetic flux solution of finite length and finite energy, arising from non-
Abelian-gauge theory, is presented.

An interesting possibility for a quark confine-
ment mechanism which gives rise to a hadronic
stringlike structure has been proposed by Nielsen
and Olesen' and further developed by Nambu. '

The first-named authors rediscovered the quan-
tum flux line which threads its way through a su-
perconductor, identifying it with the dual string.
A mechanism of flux-line termination through use
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