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in which the valence and conduction bands enter
symmetrically.
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Our random-phase- approximation model calculation of the high-frequency dielectric re-
sponse of a quasi-one-dimensional metal is generalized to the case of n conducting strands
per unit cell. For a model of the two-band system tetrathiafulvalene tetracyano-p-quinodi-
methane we obtain good agreement with recent experiments, and also predict an acoustic-
plasmon branch. Some implications for the physics of the material are discussed.

The first experimental determination of the
plasmon spectrum in a quasi-one-dimensional
conductor has recently been reported by Ritsko
et a/. ' They found that the organic metal tetra-
thiafulvalene tetracyano-P-quinodimethane (TTF-
TCNQ)' displays ~ unusual plasmon response
qualitatively consistent with the predictions of
our model calculation' for a simple quasi-one-
dimensional metal in the random-phase approxi-
mation (RPA). The predictions include negative
dispersion, the absence of Landau damping, and

a strongly angle-dependent long-wavelength plas-
ma frequency. Our model, however, was not
designed to represent a two-band system such as
TTF-TCNQ, ~ ' and detailed agreement with ex-
periment was lacking.

Here we extend our calculation to a two-band
model more nearly representative of TTF-TCNQ.
We find that much of the discrepancy between the-
ory and experiment is removed, and that com-
parison of the two provides fresh insight into the
electronic structure and optical properties of the
material. Further, our analysis predicts a sec-

ond, low-frequency plasmon branch, acoustic in
the limit of zero interchain bandwidth and experi-
mentally signficant at short wavelengths.

The model of Ref. 3 consisted of a periodic ar-
ray of parallel, infinite, metallic strands, em-
bedded in a uniform medium of dispersionless
dielectric constant ~ „, and coupled to one another
only by their mutual Coulomb interaction. As we
remarked in Ref. 3, the model in this simple
form does not apply directly to a material such
as TTF-TCNQ, whose crystal structure consists
of four conducting chains (two each of stacked
TTF and TCNQ molecular ions) per cross-sec-
tional unit cell. ' To treat such cases, we gener-
alize the model to include n distinguishable
strands per unit cell.

Our analysis proceeds in parallel with our orig-
inal work, ' and employs essentially the same
notation. If X,(q, Q) [Ref. 3, Eq. (6)] is the com-
plex density-density response function' and p, (Q)
[Ref. 3, Eq. (3)] the molecular form factor for
conduction electrons on the jth strand of the unit
cell, the total potential due to an applied poten-
tial V,„,(Q) is

I'~.i(Q) = —, I'.~(Q) —
2 Z X,(e,~)P, (Q)~;(Q) .

Equation (1) replaces Eq. (5) of Ref. 3, and we have defined

&,(Q) -=Z-P, *(Q+ G)I',.(Q+ G).
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The relations (1) and (2) represent an infinite set of coupled linear equations in V„,(Q), V„,(Q+ G),
We multiply these by p, *(Q+G') and sum over all G' to obtain

Z[&;,+x,(e,n);;(Q)1 &;(Q)=—ZP;*(Q+ G)v..,(Q+ G),
j-1 G

where the effective interchain Coulomb interaction is [cf. Eq. (7a) of Ref. 3]

U, ,(Q) = (4me'/c „)Q c P; *(Q+ G)P, (Q+ G) i Q+ Gi

(3)

(4)

The inverse dielectric tensor components 6 '(Q
+G, Q, + G„n) can be found by solving (3) for the

S; and substituting into (1). To determine the
plasmon spectrum, however, we need only note
that at a plasmon pole, the response to an infini-
tesimal driving force is finite, so that the plas-
mon dispersion is completely specified by the ze-
ros of the n&&n secular determinant:

Z„(Q, n) = det[5, , + q, (q, n)U „(Q)]= 0. (5)

We now consider the particular case of TTF-
TCNQ. For the moment we neglect the small in-
terchain bandwidths, as in Ref. 3. In this limit
the one-electron band structure" contains two

doubly degenerate one-dimensiona1 conduction
bands chemically constrained to cross at the Fer-
mi level, and the response function y, (q, n) for
each is of the one-dimensional tight-binding form
[Ref. 3, Eq. (11)]. As in Ref. 3, we find it con-
venient and sufficiently accurate to approximate
the form factors P& by representing the molecular
orbitals as anisotropic Gaussians centered at the
appropriate lattice sites. ' With these approxima-
tions, the distinction between crystallographical-
ly inequivalent chains of like molecules becomes
academic, and the plasmon problem reduces to
the case n=2.

We have solved Eq. (5) numerically for two an-
gles of plasmon propagation, 6i, relative to the
conducting b axis. Our results for Q in the crys-
tallographic a-b plane' are compared with exper-
iment in Fig. 1; results for the b-c* plane are
similar. Here we have employed the known cell
constants a, b, &c* and Fermi wave number kF
= 0.28m/b, and have chosen Gaussian orbital ra-
dii (p,„p,„p,,.) of 2.5, 1.8, 3.5 A for TCNQ
and 2.0, 1.8, 2.0 A for TTF, consistent with the
extent of molecular charge distributions. ' Since
neither c„nor the bandwidths TV, and W, are ac-
curately known, they were regarded as adjust-
able over a range consistent with recent calcula-
tions. ' The final values W, =0.4 eV, @',=0.2 eV,
~„=1.5 were chosen so as to reproduce the long-
wavelength plasma, frequency at 0=0 and to give
a good fit to experiment elsewhere. This fit is
by no means unique, and we regard Fig. 1 as il-

(a) 8 =0' (b) a=4S
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FIG. l. (a) Plasmon dispersion and expected electron
scattering intensities for propagation along the b axis.
Intensities are in units of 7t~&/2. The shaded area in-
dicates the range of single-particle excitations. Exper-
imental points are from Ref. I. (b) Same as (a) except
for propagation direction in the a-b plane and making
an angle 45' with the b axis.

i lustrative.
In addition to the usual optic branch, a second,

acoustic-plasmon mode appears in Fig. 1. The
sole condition for its occurrence when n = 2 is
that the two Fermi velocitites, vF, and e», be
unequal. Thus the prediction of an acoustic
branch is more general for the quasi-one-dimen-
sional ca,se than for isotropic" two-band systems.

The presence of a plasmon pole in the very-low-
frequency inverse dielectric tensor can have im-
portant effects upon the strengths of BCS"or
Peierls" interactions. We note, however, that
interchain hybridization" in TTF-TCNQ will al-
ter the low-frequency dispersion as Q- 0, and
that our description is also incomplete insofar as
it neglects the electron-phonon coupling and the
exchange.

For small Q the acoustic mode propagates with
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velocity
I

( )„, l ~~' g IP,(G) —P2(G)I'
I Gl'1 G Q

The nonloeal screening in our model raises v~ above both vF's and precludes Landau damping. Since
n~ & c, the acoustic plasmons do not radiate.

To evaluate the importance of the acoustic mode for an electron-scattering experiment like that of
Ref. l, we examine the relevant loss function, "Ime '(Q, Q, cu(Q)), for the two branches. For n = 2 we
have from (3) and (l) that

6G Go
—

e
—

G ~

2~ g Zr p & (Q +G)X & (0,0 )[p & (Qo + Go) +X;(0,0 ) (U;;p & *(Qo + Go)

(Qa+G.))/I.

The resulting intensities appear in Fig. 1.
At long wavelengths, the 9 =0 optic and acous-

tic modes correspond, respectively, to in-phase
and 180 out-of-phase charge oscillations on the
unlike chains, whereas near the Brillouin zone
edge the upper branch becomes purely a strand-1
(TCNQ) excitation and the lower branch purely
strand-2 (TTF). Hence the pole strength, which
resides entirely in the optic mode and exhausts
the f-sum rule as Q-O, is more evenly divided
between the two branches at the zone edge.

Acoustic plasmons whose energies are smaller
than the largest S' can relax into the single-par-
ticle continuum via a low-frequency phonon. To-
gether with the weak scattering intensity, the re-
sulting broadening may render the low-frequency
part of the acoustic branch experimentally un-
observable.

At large Q, on the other hand, the two branches
are on a more nearly equal footing, and both
should be detectable. Hitsko et al. ' do not re-
solve two branches, but do report an anomalous
increase in apparent linewidth as the zone edge
is approached. Our results for both 0 =0 and
0 =45' suggest that at least part of this increase
may reflect the growing relative strength of the
acoustic mode rather than any increase in re-
laxation rate. In any event, we agree with the
authors of Ref. 1 that plasmon damping in this
regime is probably dominated by multipair ex-
citations or (perhaps more likely) the strongly
coupled" high- frequency intramoleeular optical
phono ns.

At 0 =0', our calculated high-frequency plas-
mon spectrum agrees closely with experiment
and displays the negative dispersion expected'
for 8' sufficiently smaller than ~~. Macroscopic

electrodynamics requires that as Q-0, th«re-
quency of the optic branch behaves as w~ cosa,
provided that e is isotropic and that no current
flows perpendicular to the strands. ' That the
experimental angular dependence' is slower than
cos9 (cf. Fig. l) suggests that at least one of
these conditions is violated. We neglect the un-
known anisotropy of & and consider the effect
of a finite interchain bandwidth. The frequency
of the optic mode at long wavelengths is now
ur'(Q=0) =&a~~~'cos'9++~~'sin'9. Expressing the
anisotropy in +~ in terms of an anisotropic ef-
fective mass, we deduce from the I9 =0' and 0
=45 experiments' that the anisotropy in the band-
width is roughly W~/W~, =(br'~~/a&a~~~)'= 0.03 in
agreement with band-structure calculations. '

The results of Ref. 1 also carry implications
for the high-frequency optical conductivity. We
underscore the authors' remark that the observa-
tion of the lowest-lying well-defined plasmon
mode at 0.55 eV places a strict upper limit upon
the (lifetime-broadened) effective single-parti-
cle bandwidth. Optical experiments, "- on the
other hand, show a small but significant intra-
band conductivity persisting to energies at least
as large as the first high-frequency absorption
threshold near 1 eV. In this region, the simple
Drude absorption mechanism clearly cannot ob-
tain. Plausible alternatives include excitations
of a single electron-hole pair plus a high-fre-
quency intramolecular optical phonon, "or else
the optical generation of plasmons via the elec-
tron-lattice interaction. ' "'" In either case,
the apparent "Drude" parameters derived at high
frequencies need not bear upon the low-frequency
conductivity, and inferences about the mechanism
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of dc transport drawn from such comparisons"
must be regarded with caution.
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