
VOLUME 36, NUMBER 11 PHYSICAL REVIEW LETTERS 15 MARCH 1976

The principal conclusions are that the induced
magnetization density in metallic Sc is not like
that of a single 3d electron in atomic Sc, and that
the APW calculation of Qupta and Freeman gives
quite good agreement with our results. From the
temperature dependence of the susceptibility,
Spedding and Croat' have inferred that Sc behaves
as though there were a single localized Sd elec-
tron. Our results seem inconsistent with this in-
terpretation.

The first exploratory measurements on this
problem were carried out while one of us (WC.K. )
was a guest scientist at the Brookhaven National
Laboratory. This author wishes to acknowledge
with thanks the hospitality extended to him by the
entire staff of BNL generally and by Dr. Gen Shi-
rane and Dr. David Cox in particular. We wish to
thank Mr. J. L. Sellers of Qak Ridge National
Laboratory for valuable technical assistance.
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The effective-mass equation for indirect excitons in Ge is solved taking the degeneracy
and anisotropy of the bands into account. The calculated binding energies of the anisot-
ropy split ground state (4.18 and 3.17 meV) are in excellent agreement with experiment
(4.15 and 8.14 meU). The method is then extended to calculate the energy-momentum
dispersion of excitons, which are strongly nonparabolic, and account well, with no ad-
justable parameters, for the recently measured modulated absorption line shape.

The interest in the indirect exciton spectrum
of Ge has recently been stimulated by the accu-
rate wavelength-derivative transmission spectra
of Frova et a/. ' This experiment has determined
that the exciton ground state is split by the con-
duction-band-valley anisotropy into two levels
separated by 1.01 + 0.03 meV, and that the ener-

gy-translational-momentum dispersion relations
of the two exciton branches are strongly nonpar-
abolic, and display the "mass-reversal" effect
predicted by Kane. '

From the theoretical point of view, the solu-
tion of the effective-mass equation for indirect
excitons in cubic semiconductors is difficult be-
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cause, while the anisotropy of the conduction-
band valleys is too large to be dealt with in per-
turbation theory, the degeneracy of the valence
bands makes the variational problem rather com-
plicated, thus forcing the use of simple trial
functions with few parameters. Recently' the au-
thors have shown that this problem ean be con-
veniently treated in a tensor-operator formalism
which fully exploits the symmetry of the Hamil-
tonian and the powerful apparatus of angular mo-
mentum theory. It was shown' in particular that
the indirect excitons of Ge are well described by
an "axial model" in which the valence bands are
assumed to have axial symmetry about the (111)
axis of the conduction-band ellipsoid.

The purpose of the present Letter is twofold:

(a) to show that calculations based on this model
yield theoretical binding energies of indirect ex-
citons in Ge in excellent agreement with experi-
ment, and (b) to show that this method can be ex-
tended to calculate the exciton energy-momentum
dispersion relations. We thus obtain, for the
first time, accurate values of the translational
exeiton masses in Ge, confirming quantitatively
the mass-reversal effect predicted by Kane, "
and obtaining a theoretical density of states
which, without adjustable parameters, accounts
quantitatively for the optical line shape reported
in Ref. (1).

We start by writing the axial-model effective-
mass Hamiltonian for indirect excitons in Ge, 3

in reduced units:

a,„=a,(p) a„(p)—2/r-
P2 2/~ lit (~(2) g2) ) 2(~70/5) ()[y)(2) Z{2)j

4
( 2)1/2 ( lt /lt )~ {2)

lt, = -', (2/m, +1/m, ii),

p, „=-', (1/m„—1/m, ii),

v = u.(6r. +4r, )/5,

f = I .(r. r.)—
(2)

The irreducible spherical tensor operators of
rank 2, P 2 and t ', were defined in Ref. 4
and the physical meaning of the various terms
was discussed in Ref. (3). In order to solve the
Schr'odinger equation corresponding to the Ham-
iltonian Eq. (1), we expand the wave function in
the F, I', representation, where F=L+J, i.e.,
the sum of the "orbital" angular momentum of
the evelope function, with the spin & correspond-
ing to the valence-band degeneracy. ' In Ref. (3)
it was shown that inclusion of terms up to I = 2
in the expansion resulted in binding energies of

where, in terms of the Luttinger parameters y„
y„y, and of the longitudinal and transverse elec-
tron masses, m, |t and m, ~,

3.14 and 3.94 meV, respectively, for the I', =
+ ~ and the E,=+ 2 components of the ground-
state doublet.

The experimental values, "however, are 3.14
and 4.j.5 meV, respectively, so that while the
agreement is very good for the shallower exciton,
it is not as satisfactory for the deeper one. A
possible cause for the disagreement could be the
admixture of I =4, org-like, components in the
wave functions, induced by the term in 6 in H,„.
We have therefore extended our expansion to in-
clude states with L = 4; for the 1s and 2s exciton
doublets, the results are shown in Table I. It is
important to notice that we find excellent agree-
ment with the experimental data, and in particu-
lar with the splitting' of the 1s doublet, which is
known more accurately than the absolute binding
energies.

We now turn our attention to the problem of the
exciton dispersion. If the exciton translational
momentum, K, is different from the location of

TABLE I. Theoretical (T) and experimental (E) values of the binding en-
ergies of 1s and 2g exciton states of Ge (in meV). In the last column the
absolute square of the theoretical envelope function at the origin, iE(0)~,
which determines the oscillator strength of the exciton state, is given.

Exciton state Binding energy (T) Binding energy (E) iE(0] (T)

1s I'
1

z 2
2s Fg =+23

1

4.18
8.17
1.82
0.87

4.15
$.14

18.46
7.81
2.82
0.85
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TABLE II. Dispersion parameters (see text) .

Ed
(meV) (me V) +ts +ts rtd tc +m c

—3.675 0.505 0.886 0.128 8.288 —0.820 1.669 0.8

the conduction-band minimum, K„ the effective-
mass Hamiltonian, Eq. (1), is modified' and be-
comes

H =H, (p+2k) -H„(p - ~k) —2/r, (3)

where k= K- K,. Since II, and H& are quadratic
forms in their arguments, new terms arise which
are either quadratic in the k components or bi-
linear in the k and p components. The expres-
sion of the Hamiltonian Eq. (3) in terms of spher-
ical tensor operators is rather lengthy, and will
be given elsewhere. ' Here we wish to remark
only that, within the axial model, the eigenvalues
of Eq. (3) will depend only on kq and k„ the com-
ponents of k, respectively parallel and perpen-
dicular to the (111)direction, and not on the ori-
entation of kt in its plane. Furthermore, when

At=0, i.e., for k in the A direction, I', is a good
quantum number, and the two components of the
exeiton are not mixed. When k, & 0, and the mo-
tion is off the high-symmetry direction, this is
no longer true, and the two exciton bands will in-
teract and mix strongly giving rise to the non-
parabolicity and the mass reversal predicted by
Kane "

We have determined the eigenvalues of Eq. (3)
at various values of the translational momentum
k, thus obtaining explicitly the dispersion curves.
These calculations are considerably more com-
plicated than those for the k = 0 case, and, to keep
their size within reasonable limits, we did not
include I = 4 terms in the eigenfunction expan-
sion. The effect of g-like-function admixture,
however, can be estimated in the following way.
A phenomenological analytical expression for the
exciton dispersion was proposed in Ref. (1):

2 2 2 11~2
Z, (k)=Z, + (rr a, +r„uP)+ A. + (r„k, +r, k, 0, )

mp SPY p

where

Zg + (5 /2m ) (rfg kf +9 pg kg )

(4)

This dispersion relation corresponds to two ex-
citon bands with parabolic dispersion interacting
via off-diagonal terms x«k, ' and x~, @~at, and
provides a satisfactory interpolation of our nu-
merical results, with the parameters listed in
Table II. We then obtain the E, and Ed values
from our k = 0 calculation, which includes g-like
terms, and assume that the translational masses
are not very sensitive to this small correction in
the binding energies at k =0.

The dispersion curves, in the region of the k
space corresponding to an exciton kinetic energy
of ~ 1-2 meV are not very sensitive to the value
of the parameter ~, so that we cannot deter-
mine it with the same accuracy of the other pa-
rameters, but ean only establish that it is small;
the value appearing in Table II is to be under-
stood as an upper limit.

The theoretical dispersion curves are shown in
Fig. 1 for the transverse direction. The interac-
tion and subsequent repulsion of the two branches

I I I I I

.002 .004 .006 .008 .OI0 .OI 2
7 (A'-I&

FIG. 1. Energy-momentum dispersion of the two 1s
excitons in Ge in the transverse direction, i.e. , for
k x (111).
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FIG. 2. Curve a, experimental wavelength-modulated
optical absorption in Ge in the LA-assisted transition
region, from Ref. (1) (arbitrary units). Curve b, de-
rivative of the density of states, computed from the the-
oretical dispersion curves (arbitrary units).

good, especially when one considers that the the-
oretical curve contains no adjustable parameters,
and that matrix-element effects were not con-
sidered. Notice that the theoretical curve shows
a double structure between the two main peaks,
rather than the single broad hump appearing on
the experimental curve. The existence of a weak
double structure, however, cannot be completely
ruled out' by the experiment described in Ref. 1.

In conclusion, we wish to summarize the main
results reported in this Letter. It was shown
that an effective-mass calculation accurately re-
produces the experimental values for the binding
energies of indirect excitons in Ge, and ean be
extended to the calculation of energy-momentum
dispersion relations which allow a quantitative
understanding of the optical line shape.

We are very grateful to E. Q. Kane for stimu-
lating discussions and to A. Frova for a useful
correspondence.

is self-evident. We mention that a small, but ap-
preciable, nonparabolicity is also displayed by
the numerical results for the longitudinal direc-
tion. '

We now address ourselves to the problem of
the optical line shape resulting from the energy-
momentum dispersion. In Fig. 2, we show the
derivative of the density of states corresponding
to the theoretical dispersion curves (Gaussian
broadened to match experimental resolution),
and, for comparison, the modulated absorption
coefficient due to LA-phonon-assisted transitions
to indirect excitons, measured by Frova et al.'
The agreement between the two curves is very
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