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~ When the gauge group is restricted to the group SL(2,
C), Yang's Lagrangian is equal to ~-g Tr(I'»I' "~),
whereE» is the matrix'&, =gf» gI„and g& are
the infinitesimal matrices of the group SL(2, C).

~3Although the equations of motion obtained involve
the full Riem~» tensor, obviously the Biem~~n tensor
f» should then be taken according to Eq. (8) with y;;
=A-0

~4The Riemann tensor f»" is taken now according to
Eq. (8) with y;t = T;& and A = T/24, where T;; is the en
ergy-momentum tensor. That does not mean that the
Bicci tensor part of the Riemann tensor is taken fixed.
It is still a dynamical variable. It should be noted that
in this paper no attempt is made to obtain the full set
of field equations of the gravitational theory from a var-
iational principle, such as Eqs. (20) to (22) of Ref. 1,
when considering gravitation as a gauge theory. No at-
tempt is also made, in fact, to discuss Yang'g gravi-
tational Lagrangian at all [see, for example, A. H.
Thompson, Phys. Rev. Lett. 34, 507 (1975)]. For ex-
ample, among the equations that are not obtained in our
theory are R» =0 or R» = T» —2 g»T (formally the
Einstein equations), although these equations are not
as centra1 in the Newman-Penrose scheme as they are
in the usual presentation of general relativity theory
However, it is worthwhile emphasizing that the New-
man-Penrose dynamical equations (Bianchi equations
and the definition of the Riem~» tensor in terms of the
spin coefficients) awe obtained from our variational
principle.

A, Papapetrou, private communication.
~ The importance of such an operator formalism for

the gravitational field variables was particularly stressed
by R. Geroch, Ann. Phys. (N.Y.) 62, 582 (1971), and in
private communication with the author.
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We derive an exponentially decaying interaction between atoms in semiconductors. The
decay length is ~[2(~&+m2)E~] ', where m& and m2 are the valence-band and conduction-
band effective masses and F~ is the minimum energy gap. We show that Weber's bond-
charge model of lattice vibrations leads to exponentially decaying interactions. Compar-
ing the experimental vibration spectrum and the theoretical decay length suggests that
the flattening of the TA mode is due to this long-range interaction.

Weber' has extended Phillips's' bond-charge
(BC) model of lattice vibrations in semiconduc-
tors to explain the characteristic flattening of the
transverse acoustic phonon mode away from the
zone center and the unusually low frequency of
this mode at the zone boundary. To illustrate
the model Weber considers a monatomic linear
chain with lattice constant d where each atom is
coupled to its nearest-neighbor BC by a force
constant f, and the nearest-neighbor BC's are
coupled with a force constant f'. A simple cal-
cula, tion gives the dispersion relation

(f +2f') sin2(&k/2ko)

f + 2f' sin2(&k/2k, )

where M is the atomic mass; 0 is the wave num-
ber of the mode and k, its value v/d at the zone
boundary. (The mass of the BC's is set equal to
zero. )

This model can be described equally well in
terms of a Born-von Kfrrnln expansion in which
only two-body interactions between atoms are
considered. The BC in Weber's model produces
long-range forces. This can be seen by displac-
ing atom i while keeping the positions of the other
atoms fixed; one can then calcula, te the force
transmitted through the BC's to atom j by mini-
mizing the total energy of the distorted lattice
with respect to the BC positions. This calcula-
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tion defines the force constant A. q; between atom
i and atom j which is found to be

)(.;,. =f sinh(2 p/k, ) exp(- p!x, -x, ! ),
where

cosh(((p, /k, ) =1+f/f'

andx& is the equilibrium position of the gth atom.
These force constants reproduce Eq. (1).

Weber notes that significant flattening of the
TA mode arises when f'/f » 1. This corresponds
to a very long-range interaction (p «k6) and con-
sequently we may conclude that the flattening of
the TA mode in semiconductors occurs because
of long-range, exponentially decaying forces.
The bond-charge model of Weber provides a
rationalization of that interaction. Note that no
Coulomb charge was included in the model; the
long-range forces are not Coulombic but arise
through the electronic structure.

It is a, familiar fact that such interactions must
be exponentially decaying in insulators (or semi-

conductors) with a decay length depending upon
the band gap. These are the counterpart of the
Friedel oscillations in a metal but with an imag-
inary wave number. Bloembergen and Rowland'
have in fact speculated on a relation between the
decay and the band structure. Our intent here is
to derive the form and compare it with their ex-
pression and with the observed vibrational spec-
tra of semiconductors.

We represent the occupied electronic states
(valence-band states) by Bloch functions I k,)).,),
where k1 is a wave number in the 8ri 1louin zone
and A, denotes the band index and spin; similarly
we represent the unoccupied electronic states
(conduction-band states) by I k+2). We introduce
as a perturbation the infinitesimal displacements
of two atoms, one at R& and the other at R, The
perturbation is taken to be a sum of two terms,
V(R&) and V(R,), localized at the two sites. Then
the shift in energy of the system, to second order
in the perturbation, contains two terms which in-
volve both displacements; these represent the
interaction energy between the two atoms:

(,) ~ {k,A. , I V(R/) I k+2) {k2)(,2 I V(R)) I kP, )

The Bloch functions may be written in the form 0 ' 'n&ze'" ' and the factors of the form exp[i(k, —k,)
~ R, ] extracted from the matrix elements. The remaining integrals are over atomic cells and are rig-
orously independent of the relative positions R~ and R, . Thus Eq. (4) can be written in the form

(2) 2~I,2 exp[i(k, —k2) (R( —R,)]
(6)E' E12 1 2

The integrals over wave number will be continued into the complex plane and the exponentially decay-
ing interactions will arise from poles in the complex plane.

We seek the pole closest to the real axis since it will correspond to the longest-range interaction.
Any poles from I» will lie a distance of the order of a lattice wave number from the axis since the
integrals involve functions with lattice periodicity. The nearest pole will arise from the band edges
leading to the smallest E, -E2 so that it may be estimated by expanding the corresponding bands around
their extrema; that is, by using an effective-mass description. In addition I» may be taken out of the
integral for this estimate. Taking first the case of band extrema at k =0, we write Eq. (5) in the form

(,) 2 ( 3 3 exp[i(k, —k,)~ (R, —R,.)]
(6)

where m, and m, are the valence-band and conduction-band effective masses, respectively, and E~ is
the energy gap. We next make the change of variables

q=r, -k„K=(m,/I, ) /2k, +(I,/m, ) /2k, .
With these substitutions Eq. (6) becomes

E(2) 1 2(m, +I,), , exp[iq (R,—R,.)]
(2p)6 [(m /~ )1/2 ~ (m /I )1/2J 3 k2 ' f ~ ~q2 +k 2
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where

k,' = 2(m, +m, )E, /k'. (9)
A

The angular integral over q may be performed
explicitly and the integral over I gl continued into
the complex plane. The pole at I q I =+i (EP yk, ')'/'
gives a term proportional to exp( —

I q I I R, —R, I).
A subsequent integration over K gives the leading
term proportional to exp(- k, I R& —R& I). If an in-
direct band gap had been taken, with minima sep-
arated by a wave vector q„ this would simply
have introduced a constant factor exp[iq (R& —R;)]
(summed over the minima) and an oscillatory in-
teraction, again modulated by the exponential de-
cay as above.

Note that if either mass becomes infinite the
interaction is destroyed, contrary to the finding
of Bloembergen and Bowland' who take the va-
lence band flat but still expect an interaction.
We can see schematically how this error arose
by returning to our Eq. (5) which they also ob-
tained. By taking a flat valence band they took
E, to be independent of &y Then, ignoring the
I» term as both treatments have done, the inte-
gral is of the form exp[ik, (R, —R;)] over a Bril-
louin zone.' With B; —B, a translation of the per-
fect lattice, this integral vanishes identically.
Because they approximate the Brillouin zone by
a sphere they obtained a net interaction with an
oscillatory term depending on the cutoff chosen.
We believe that this contribution is not present
in a correct theory.

It is of interest to compare the form we deduce
with that obtained from the observed vibration
spectrum using the bvo-parameter model of Web-
er. We determine f and f' by fitting the [100] TA
dispersion curve at two points: ~ TA(k =k,) and
(u/k as k tends to zero. In this way we obtain

f'/f =p(&5&44/p~'&TA I) p

where p is the density, C44 is the elastic shear
constant, and a is the lattice constant. Combin-
ing this with Eq. (3) gives an empirical value of
p, which may be compared with our calculated
kg.

Note that for a realistic band structure there
are three valence bands which contribute to the
interaction, but we include only the light-hole
band which, as seen from Eq. (9), gives the long-
est-range interaction. For the indirect-band-
gap semiconductors the mass is anisotropic and
it is not difficult to carry out the analysis for
that case. However, for simplicity we use for
our comparison an isotropic conduction-band

TABLE I. The second column gives the ratio of the
screening length to the zone-boundary wave length
based upon the minimum energy gap and effective mass-
es. The third column gives an experimental estimate
of this ratio based upon Weber's model of the vibra-
tion spectrum.

Material kp/k~ kp/p

C
ZnS
GaP
Si
GaAs
Ge
InSb

1.7
1,6
2.1
3.1
4,7
4,8

22.4

0.9
1.8
2.0
2.0
2.1
2.3
2.9

mass determined by rn;„= (m, rn, ')' '.
The results for those materials for which we

could find masses are shown in Table I. The val-
ues obtained from the vibrational spectra (k,/p, )
are of similar magnitude to those predicted from
our theoretical expression for the decay length.
In addition, the trend from material to material
is essentially the same.

We also calculated k~ using an average gap4
obtained from optical absorption peaks (E~ =E,)
and unit masses. This leads to a universal value
for k, /k~ of 0.7 for homopolar materials. The
reason for this is the experimental fact noted by
Harrison and Ciraci' that

E, =3 %'/md'

where d is the bond length.
The contrast with the values shown in the right-

hand column in Table I suggests that it is indeed
the minimum gap, rather than an average gap,
which dominates the observed flattening of the
TA acoustic mode.

The remaining discrepancies apparent in Table
I reflect the crudeness of the linear-chain model
of the vibrational modes which can only be re-
garded as schematic. We believe that the limit-
ing long-range form of the interaction is rigor-
ously correct and the uncertainty lies in the role
of intera, ctions of shorter range and of long-range
electric multipole interactions. In fact if inter-
actions between nearest-neighbor atoms were
taken into account in a three-parameter model
the values of kp/p would be increased, improving
the agreement. It is also interesting to note that
the flattening of the modes, which Weber account-
ed for through the use of a bond charge, can be
reinterpreted in terms of long-range interactions



VOLUME 36, NUMBER I PHYSICAL REVIEW LETTERS 5 JANUARY 1976

in which the valence and conduction bands enter
symmetrically.
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Our random-phase- approximation model calculation of the high-frequency dielectric re-
sponse of a quasi-one-dimensional metal is generalized to the case of n conducting strands
per unit cell. For a model of the two-band system tetrathiafulvalene tetracyano-p-quinodi-
methane we obtain good agreement with recent experiments, and also predict an acoustic-
plasmon branch. Some implications for the physics of the material are discussed.

The first experimental determination of the
plasmon spectrum in a quasi-one-dimensional
conductor has recently been reported by Ritsko
et a/. ' They found that the organic metal tetra-
thiafulvalene tetracyano-P-quinodimethane (TTF-
TCNQ)' displays ~ unusual plasmon response
qualitatively consistent with the predictions of
our model calculation' for a simple quasi-one-
dimensional metal in the random-phase approxi-
mation (RPA). The predictions include negative
dispersion, the absence of Landau damping, and

a strongly angle-dependent long-wavelength plas-
ma frequency. Our model, however, was not
designed to represent a two-band system such as
TTF-TCNQ, ~ ' and detailed agreement with ex-
periment was lacking.

Here we extend our calculation to a two-band
model more nearly representative of TTF-TCNQ.
We find that much of the discrepancy between the-
ory and experiment is removed, and that com-
parison of the two provides fresh insight into the
electronic structure and optical properties of the
material. Further, our analysis predicts a sec-

ond, low-frequency plasmon branch, acoustic in
the limit of zero interchain bandwidth and experi-
mentally signficant at short wavelengths.

The model of Ref. 3 consisted of a periodic ar-
ray of parallel, infinite, metallic strands, em-
bedded in a uniform medium of dispersionless
dielectric constant ~ „, and coupled to one another
only by their mutual Coulomb interaction. As we
remarked in Ref. 3, the model in this simple
form does not apply directly to a material such
as TTF-TCNQ, whose crystal structure consists
of four conducting chains (two each of stacked
TTF and TCNQ molecular ions) per cross-sec-
tional unit cell. ' To treat such cases, we gener-
alize the model to include n distinguishable
strands per unit cell.

Our analysis proceeds in parallel with our orig-
inal work, ' and employs essentially the same
notation. If X,(q, Q) [Ref. 3, Eq. (6)] is the com-
plex density-density response function' and p, (Q)
[Ref. 3, Eq. (3)] the molecular form factor for
conduction electrons on the jth strand of the unit
cell, the total potential due to an applied poten-
tial V,„,(Q) is

I'~.i(Q) = —, I'.~(Q) —
2 Z X,(e,~)P, (Q)~;(Q) .

Equation (1) replaces Eq. (5) of Ref. 3, and we have defined

&,(Q) -=Z-P, *(Q+ G)I',.(Q+ G).
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