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Yang’s new integral theory for gauge fields associated with the group GL(7) is discussed
for the particular case when GL(7) is reduced to SL(2,C). It is pointed out that, in this
particular case, the theory gives the vacuum Einstein equations, but not the full equations.
A modification giving nonvacuum equations consistent with the Einstein theory is pointed
out. The field variables are then written as operators.

Because of the large number of theories of
gravitation, there should be little interest in find-
ing one more new theory, This is, however, not
quite the case when gravitation is obtained from
a gauge theory since an important trend in parti-
cle physics is in that direction, This is the case
of Yang’s! recent integral formalism of gauge
fields associated with the group GL(z) in which
he develops gravitational field equations that are
related, but not identical, to Einstein’s equations.
Since Yang’s theory is Riemennian covariant, and
Riemannian geometry is well understood by now,
it is very important to relate the new theory to
general relativity theory so as to find out its sig-
nificance. In this paper I find the conditions un-
der which Yang’s theory yields the usual Einstein
equations when GL(n) is chosen to be SL(2,C). I
then represent both the potential and field as op-
erators in a Hilbert space.

Our starting point is to find out the geometri-
cal meaning of the potential b,*(x) and the field
fup®(x), both of which are Riemannian covariant,
They are related by
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where fw," is essentially the Riemann tensor, the
superscript 2 being the group index, and C,-jk is
the structure constant of the gauge group. The
crucial point here is that the potential b,*(x) is
not the spinorial affine connection as is the case
in Utiyama’s? gauge theory of gravitation which

is an extension of the usual Yang-Mills? theory.
As is well known, affine connections are not Rie-
mannian covariant, a drawback of the theory. An-
other crucial difference is that the theory here is
Riemannian at the outset, whereas in the Utiyama

theory the curvature aspect is introduced in an
ad hoc way.

Three groups play the most important roles in
gravitation: (1) the Lorentz group; (2) the group
SL(2,C); and (3) the Poincaré group. Since SL(2,
C) is the covering group of the Lorentz group, of
interest are left cases (2) and (3). In this paper
I choose the gauge group GL(n) to be SL(2, C),
i.e., choosing n =2 along with demanding that the
determinants be equal to 1, The gravitational
field is well understood by now in terms of its
symmetry and invariance under the group SL(2,
C).*"!! This fact enables us to establish the rela-
tion between Yang’s new integral formalism for
gauge fields and general relativity. The result
can be summarized as follows:

When SL(2, C) is taken as the underlying gauge
group, the potential b“’z(x) becomes complex and
k=1, 2, 3. Hence one has twelve complex func-
tions. Let I", m*, m** andn* be four null vec-
tors, satisfying I, n"=-m m*#=1, all other
products being zero, where I* and " are real
whereas m* is complex. These four vectors can
be given a unified notation by putting 7* =" .,
mt=0*,, and n*=0",. The indices ab’ of
o ,rare dyad indices. The geometrical metric
is related to the null tetrad of vectors by g*”
=0 0" where dyad indices are raised by the
Levi-Civita skew-symmetric tensors. With the
help of 0/ one can write the potential in a differ-
ent representation as b,,.*=0c" ,.b,*. The new
functions b,,.* are then the spin coefficient func-
tions, written according to the scheme?®

boo* = (- &, €, ), bor* =(~ 0,8, b,
(2)

blo'k :(" Py A)a bu’k =(_ Ty 7, V)'
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A similar representation can be given to the field by introducing the quantities f,,.-=0" /0", Spv.
The new functions describe all irreducible components of the Riemann tensor according to the scheme®

Sorroo*=(=toy ¥y, Uy +24), fryr10F=(~ Yy = 20, Y5, ¥9),  Fro700"= (= P, @100 P20y

Srr0017= (= @, @12s P22)s

flo'm’k:(‘/ﬁ" o1y = Yo+ @i+ A, = Y+ ¢y)).

Here @, ..
A=R/24, where R is the Ricci scalar.

fu’oo'k: (=4, - Pory Yo+ Pri— A, ds+ @), (3)

., ¥, describe the Weyl tensor, the ¢’s describe the trace-free part of the Ricci tensor, and

Now we come to the important problem of the field equation. Yang’s Langrangian is of the form £
=\/—?gfw"f“"k, where space-time indices were raised by the geometrical metric, and group indices
by the group metric.'? Yang correctly states that this Lagrangian does not yield the Einstein field
equations. It has been shown,” however, that £ gives!® the vacuum Einstein field equations written in
the formalism of Newman and Penrose when the group SL(2, C) is the gauge group; the Euler-Lagrange

equation leads to

? ' ’ Ta’ ’ ’ 150 '
0 F p1gqr— 10,7 (B )2 O @ OO V4B )P (B 1) Y Ly = [BYY, Fyprar] =0, (4)

and Eq. (1) gives (8,, =0 ;,.8,)

acdlBabl—' aab'Bcd’- (Bcdl)afobl— (Bd,cT)f b'Baf'+(Bab')chfd'+(Bb'aT)fd'Bcf’

Equations (4) and (5) are identical to Eqgs. (4.5)
and (4.2) of Ref. 6. The matrices F1q:=) fuprcar
xg,and B,,,=2,b,,*g,, where g, are the infinites-
imal matrices of the group SL(2, C). The Lagran-
gian £ does not give a third set of equations, Egs.
(6.10) of Ref. 6, that relate o* . to b,%. This
third set, however, can easily be obtained sepa-
rately.” To obtain a Lagrangian that gives the
nonvacuum field equations one notices that £ has
the form V= go*f2, The only alternative way of
writing such a combination of 0 and f is in the
form™ ‘E: _Ngo.”ab’ chd’ GaaleBCb'fpukfa gr- The
Lagrangian £ was shown®?® to lead to two sets of
field equations with matter. Using the totally
skew-symmetric tensor €***® of weight +1 whose
components are 1, 0, — 1, one obtains for £ the
expression ﬁ:e““"‘ﬁf,wkfaak. Hence £ is free of
the metric tensor that occurs in £. In fact, £ is
the only Lagrangian that satisfies this important
property and may thus be considered as a func-
tional of the potential B and field F, just like oth-
er non-Abelian gauge theories.

We conclude our remarks by giving operator
versions to the potential and field.'®* This can be
done in a remarkably natural way in the present
context of gravitational theory. To this end we
define the matrices B, =b,*¢, and F,"*g,, where
&, are the infinitesimal matrices of the group. If
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+[Babl, Bcdl]=Fablcdl. (5)

g~ D(g) is a representation of the group, then £
go, under the representation, into the infinitesi-
mal operators D,, as g,—~D,, where D, are de-
fined in the space representations. Now define
the operator functions

ﬁ#=2kbﬂka7 FMD=Z;kfpkak’ (6)

and denote b,%x)D, by I;pk and f,,%x)D, by fwk.
The operator functions 5,"’ and fp,," then describe
the gravitational field. Since g—D(g) is a repre-
sentation, the operators D, satisfy the same Lie
algebra as the infinitesimal matrices g,. Hence
one has for the commutation relations of the field
operators the following:

[6,i(x), B, i(y)] - =ihCH, b M x)6%x —y).  (7T)

Equation (7) has the same structure as that used
by Lee, Weinberg, and Zumino.!” Commutation
relations of other components can be found and
their implications on quantum gravidynamics
should be further explored.

Part of this paper was written while the author
was at the Institut Henri Poincaré, It is a plea-
sure to thank A, Papapetrou and J. Mador for
their kind hospitality and for useful discussions.
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We derive an exponentially decaying interaction between atoms in semiconductors. The

decay length is Z[2(m, +m,)E,] "1

2 where m, and m, are the valence-band and conduction-

band effective masses and E, is the minimum energy gap. We show that Weber’s bond-
charge model of lattice vibrations leads to exponentially decaying interactions., Compar-
ing the experimental vibration spectrum and the theoretical decay length suggests that
the flattening of the TA mode is due to this long-range interaction.

Weber! has extended Phillips’s® bond-charge
(BC) model of lattice vibrations in semiconduc-
tors to explain the characteristic flattening of the
transverse acoustic phonon mode away from the
zone center and the unusually low frequency of
this mode at the zone boundary. To illustrate
the model Weber considers a monatomic linear
chain with lattice constant d where each atom is
coupled to its nearest-neighbor BC by a force
constant f, and the nearest-neighbor BC’s are
coupled with a force constant f’. A simple cal-
culation gives the dispersion relation

(f+2f") sin®(nk/2k,) @)
f+2f" sin®@k/2ky) °

w?=2f

where M is the atomic mass; % is the wave num-
ber of the mode and %, its value 7/d at the zone
boundary. (The mass of the BC’s is set equal to
Zero.)

This model can be described equally well in
terms of a Born-von Kdrmdn expansion in which
only two-body interactions between atoms are
considered. The BC in Weber’s model produces
long-range forces. This can be seen by displac-
ing atom ¢ while keeping the positions of the other
atoms fixed; one can then calculate the force
transmitted through the BC’s to atom j by mini~
mizing the total energy of the distorted lattice
with respect to the BC positions. This calcula-
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