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By choosing the atomic system and the frequency
of the control laser appropriately, it should be
possible to control beams from the far-infrared
to the vacuum ultraviolet. The rotation effect
also provides a sensitive technique for measuring
two-photon cross sections. Extensions of this
work to other schemes which use the two-photon
dispersion to provide pulse compression and re-
shaping are presently under investigation.
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Magnetic surfaces for a plasma with a helical current perturbation - e are destroyed
by toroidal effects or' by a second current perturbation, of incommensurate helicity, and
the behavior of magnetic field lines becomes stochastic in layers of relative width E'

exp(- z/2e}, where l = 2~m&/m~ + 1 with m and m& the azimuthal mode numbers of the orig-
inal helical field and of the perturbation.

This work considers how the magnetic surfaces
for a tokamak discharge are affected by helical
perturbations of the plasma current. Such cur-
rent perturbations are known to be associated
with resistive modes, "and substantial experi-
mental evidence has been offered' for the occur-
rence of magnetic islands~ associated with non-
linear tearing instabilities. " In this paper we
show that the existence of two such modes with
different helicity oz the effect of toroidal geom-
etry on a single such mode leads to the destruc-
tion of magnetic surfaces. The resultant stochas-
tic wandering or "braiding" of the magnetic lines
can produce collisionless radial heat transport,
enhanced current penetration, and radial parti-
cle transport, and may change the inductance for
toroidal plasma current flow so that sudden on-
set of braiding would produce negative or posi-
tive spikes in the loop-voltage signal. '

The mechanism of magnetic-surface destruc-
tion' was first investigated in two classic papers
on magnetic irregularities, ""where it was dem-
onstrated that a spectrum of overlapping reso-
nances produces stochastic wandering of the mag-
netic field lines. In this work we start with a
field of helical symmetry and exact magnetic sur-
faces which exhibits a single set of primary is-
lands, i.e. , a single resonance at some y =y, be-
tween the helical variation and the rotational
transform t(r). Weak asymmetry is introduced
via a first-order magnetic perturbation of differ-
ent helicity which might be due to toroidal effects
or to the presence of a second magnetic reso-
nance at y =r, . The incommensurate perturba-
tion is found to produce little secondary islands
which appear wherever the Fourier components
of the perturbation resonate with the local trans-
form, co(k), Eq. (4), within the primary islands.
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The island separatrix is given by the $ =y' con-
tour, y—= I

I'I'~', and the full width of the islands

In fact, a pileup occurs with a denumerable infin-
ity of chains of these little secondary islands ap-
pearing as the primary separatrix is approached
from both inside and outside. Calculating the
width of the secondary islands in each such chain
and the spacing between adjacent chains, we find
that the relative thickness of the braiding region,
within which secondary-island overlap occurs
(see Fig. 1), is given by a nonanalytic function of
the expansion parameter, e, namely, e 'exp(-w/
2e). e, defined in Eq. (8), is proportional to the
thickness of the primary islands and is inversely
proportional to m, I r, —rol /m. l is approximately
21m, /m I + 1, and m and m, are a,zimuthal mode
numbers for the original helical field and for the
perturbation, respectively. This result may be
compared with an earlier estimate" for the thick-
ness of the stochastic layer, ™exp(-1/e).We al-
so find that toroidal effects produce stochastic
regions around the separatrices associated with
any magnetic island. As a specific illustration,
we consider the nz = 2 ST tokamak islands, mea-
sured by von Goeler, ' and evaluate the fraction
of island area in which the magnetic field is sto-
chastic.

It is worth noting that the results obtained here
may be directly applied also to the analysis of
the motion of a charged particle in the field of
two incommensurate plane waves. "

We consider, in zero order, a magnetic field
of helical symmetry, B(r,u), u =-m9 —nz/R. r,
8, and z are the usual cylindrical coordinates.
The field is derivable from a vector potential,
B=VX A(r, u), and direct substitution will ver-
ify that the flux function" g =mA, +n(r/R)Ae =
—f [mBe —(nr/R)B, ]dr satisfies the condition for
a magnetic surface, 8 V( =0. We define 2r/t. (r)

q(r) =-r(B,)/R(B-e), where the averages are taken
over a period in u, and, making use of the identity
rB„=Bg/Bu, expand around the rational surface
r =r„at which nq(r, ) -m = 0. With B„=b(r) sinu,
which we might imagine stems from a helical rip-
ple in the plasma current distribution equivalent
to aj „-6(r-r, ) cosu, we find

P=2K

rp4 2y—

rp ——

rp 2y—

U =-7I' u=Q U =71

FIG. 1. Structure of primary magnetic islands in the
vicinity of r=xo, showing several $ =const contours
and, at selected points, values of the angle variables
u, o., and P. I")0. Shading indicates a representative
region of "braiding, " i.e., stochasticity.

0 & k'=—(y'+ g)/2y',

and, inside the separatrix, p(k, u), such that k
x sing = sin(u/2). The integration of dn/du =y(d(/
dr) ' then leads directly to p =am(n, k) and the
coordinate transformation equations, u =2 sin '[k
x sn(n, k)] and r r, = 2yk-cn(n, k), where sn and
cn are Jacobian elliptic functions, periodic with
the period 4K(k), K(k) is the complete elliptic in-
tegral of the first kind, and am is the inverse
function of the elliptic integral of the first kind.
The angle variable o. increases by the increment
4K(k) on one complete circuit (see Fig. 1); if we
renormalize this increment to 2n, then the effec-
tive rotational transform in the island interior,
relative to the local magnetic axis (the elliptic

is 4y; see Fig. l.
With introduction of orthogonal coordinates $,

n, and g which are local to the primary islands,
the coordinate $, Eq. (1), parametrizes the mag-
netic surfaces and V$ will be everywhere perpen-
dicular to them. The third coordinate, g, is
chosen so that Vg is directed along the r =const,
u =const helical lines and is normalized so that

I Vri I
= 1. n is perpendicular to q and to $, n =ri

x $, and we choose to calibrate n so that its rate
of change along q is a function of $ alone, i.e. ,
so that n =dn/d7l ™&u($),with the important advan-
tage that Eq. (6), below, will then be immediate-
ly soluble by simple Fourier analysis.

One may verify that the choice dn/du = (dn/dq)/
(du/dpi) =y(s$/Br) ' will provide that &u ™dn/drl re-
mains constant along a line of force, i.e. , on a
single $ surface. We now introduce new vari-
ables, k($),
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stagnation point), will be

2nL dn ~m y
4K(k) dq 2 K(k) dr ' (4)

where L =- 2»R[1+ (ny, /mR)'p' is the distance
along (B(r„u)) for hz =2'.

Distances between nea, rby contours ( and $+d$
are related by Idrl =d(l V)I '= 2y[cn'n+(my/r, )'
x sn'n dn'n] 'i'dk, and the area inside a, closed
contour $(k), k~ 1, is given by

16yk(1 —k') dK(k)
t vul dk

where I Vu I =mL/2m, R. A; may also be consid-
ered the action variable conjugate to the angle
variable n; the Hamiltonian would be $(A, ).

Outside the separatrix, the appropriate substi-
tution leads to u = 2 am(P, 1/k), r -r, = 2yk dn(P, 1/
k), and in (4), K-K(1/k); see Fig. 1. Distanc-
es are related by ldrl =2y[dn'P+(ym/kro)'sn'P
x cn'p] "'dk, and the total a,rea between the up-
per and lower $(k) contours, k) 1, from P=0 to
2K(l/k) is AD= 16ykl Vu I 'E(1/k), where E is the
complete elliptic integral of the second kind.

We now introduce weak asymmetry through the
first-order perturbation, J3„' =b ' simv, b'
=const, as might be induced by helical plasma-
current ripples at an adjacent surface, r =z, .
The first step is Fourier analysis of the pertur-
bation field, ™F', Eq. (6), into harmonics of the
variables e and q. We define X and v such that

one=to, zu =m, 9-n, z/R =Au -tcq/R, X=m, /m,
v=n, -m, n/m. The error in the approximate

forms for X and z is of order (r,/qR)' .In the en-
suing Fourier analysis, 2A. is required to be in-
tegral, but the results should be representative
of the analysis for other values of A. The new
magnetic surfaces will, near y =y„be of the
form y ' (k)+y ')(k, n, vl) =const, and will satisfy
the first-order equation B ' Vy ' =(VIB„+nB~)

We approximate B„as con-
stant, and use Eq. (4) together with dn/d7I =

I V n I

x B„/I Vr)l B„ to evaluate I Vn I B, to find, inside
the separatrix,

Bq 2»' Bn d$

E ' = -LB—' (m) Vg/B„.

Although Eq. (6) wa.s derived for thin primary
islands, its use of the action [A, (k) or A, (k)] -an-
gle (n) formalism assures us that an equation of
this same form could be obtained for thick pri-
mary islands.

To solve Eq. (6), we expand both y 'i and F 'i
in Fourier series,

(i) fTPA VK'g=Q p»(k)exp 'l

2 (
)—

p» p

and substitute to obtain y»(k) = -iE&, (k)(dy 'i/
d ()[~k) —2&v K] ', using L = 2»R . Since we are
free to choose the function qr '~(k), the simplest
selection for solubility is dye'~/dk =Q„,(k -k„„),
where &u(k») = 2@m/p, for each p, , v. Then the
magnetic surfaces can be determined by expand-
ing y +y ' = const around each little resonance,
k =hap'.

(k —k„„)2 . dc@ d$ ' . w pn vv7)

2 dk dk ~ ~" 2K(k) R

!
ing the integrand about the uppermost pair of sin-
gular points, "we use, for example, near a=2K
—iK', K'—= K[(1—k')' '], cnn =cn(2K —iK'+En)
=dn(An)[ik sn(An)] ', etc. , with the expansion
parameter e given by

my d(. /d~
277 K

'my

m, (~, -~,) (8)

(The evaluation of E» can be carried through in
a straightforward fashion without the small-e ex-
pansion e.g. , picking up all the residues, etc. -

summing just over p, , v and —p, , —v.
To determine I „,, given by

F»(k) =[8»K(k)] 'J 'd(qz/R) J' dn E(w, k) exp[i(-wean/2K+vip/R)]

with E(m, k) ~ —L(b ' /B„)(y y, ) sin(—Xu —eq/R),
we recall that r -z0=2yk cn(n, k), A, =m, /m, and
u/2 = sin '(k snn) =—Q. Then we expand, for ex-
ample for 2X even, sin(Xu) =sin(2XQ) =(-1) "
x 2'~ ' cosQ sin'" 'Q+. . . = (- 1) "2' ' dnn (k
x snn)'~ '+. . . and introduce similar expansions
for 2X odd and for cos(2m, Q/m). Contributions
to I „,from subsequent terms in the series are
algebraically small in the expansion parameter,
e, Eq. (8). The n integral is easily evaluated if
its contour is depressed, for p, &0, to run from
(0, 0) to (0, —i~) to (4K, —i~) to (4K, 0). Expand-
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22k-2g 5{~) 1
(2A.)! b k dK/dk

exp(-K'/e)
2X 1

where H = [sgn(~n)]". The full width of the little
islands in terms of k is 4y~, y„=—I I'& I'~ . From
the resonance condition ur(k») = 2w vK/p, and using

I vl = 1, we can find the increment in k», b, k,
corresponding to adjacent resonant surfaces de-
termined by I Ap, l

= 1. With use of (4) and (8), Ak

=2@I nl (p,'d~/dk)"'=me(2dK/dk) '. Because &u(k)- 0 as k - 1, Eq. (4), resonances will occur for
all integer p, & p.~;„. (A similar pileup also occurs
as the separatrix is approached from the out-
side. ) Overlap of little islands will begin when
b.k =4y„, which occurs when

k 2' " b ' exp(-K'/e)
2 dK/dk n(2X)! b c'~+'

For k-1, k(2dK/dk) '~1-k =5k and K'(k)=n/2.
As noted before, the thickness, 5k, of the sto-
chastic layer is given by a nonanalytic function
of e, namely, -e"' 'exp(-n/2e) For .fixed b,
e varies as (dt/Ck)'~' , and in this circumstance
high-shear regions will be especially suscepti-
ble to magnetic braiding. Of some interest also
is the steep rise of the function e ' 'exp(-K'/
e) prior to reaching its maximum at e =K'/(2K+ 1).
In this range a modest increase in c can produce
a sudden large increase in the thickness of the
braiding layer.

Outside of the zero-order separatrix, the ex-
pressions for + and e are the same as before ex-
cept that K =K(1/k), etc. Equations for the new

magnetic surfaces in the neighborhood of k =k&,
are in the form of set (9) but with n —P, (kdK/
dk) '- —k'~[dK(1/k)/dk] ' andH ——,'[1+(-1)&+2~]

x [1+sgn(run)]. Resonances appear only for
sgn(+It) &0 and I hp. l =2, so that the density of lit-
tle islands and the thickness of the braiding lay-
er are reduced to approximately half their inside-
separatrix values. The expression for the over-
lap condition resembles (10) except that the new
left-hand side reads [k'~dK(1/k)/dk] '- 25k.

Using the results of the previous paragraphs

but the result is cumbersome. ) The argument
for ~ and for the K and K' elliptic integrals is
k», and v =+ 1. r, is the radius at which q(r, )
would equal m, /n, if dt/dr , were constant. In this
manner we find I &, for p. & 0, and for p. &0 we use
E „„=E&„*.Then Eg. (7) takes the standard
form for island contours,

(k -k»)' e I &uwlq—I'gH cos

together with the expression for A;, Eq. (5), and
for A„we can easily derive an expression for
the ratio of the total stochastic area both inside
and outside the primary separatrix, M, to the
total area, A, within the primary separatrix,
valid for cr&& 1,

5A/A = 0.75cr 1n(27.4/v).

The considerations here can be applied to study
the effect of toroidal geometry on magnetic is-
lands. To first order in r/R, the axisymmetric
poloidal and toroidal fields are given" by Bs (()
x [1+(r/R)A(g) cos8] and B,(g)[1 —(r/R) cos8]; the
quantity A+ 1 is proportional to the magnitude of
the effective "vertical" field needed to balance
the well-known toroidal hoop forces. We com-
pute the excitation function P = wy'n(A + 1)(r/R )
x (sin[(m + 1)8 —ru/R] + sin[(m —1)8 —nz/R] ),
and carry out the perturbation analysis as before
to find, with rn, = m+ 1, n, =n,

k mr(A + 1) 2'~+' exp(-K'/e)
2dK/dk nR '(2X —1)! e2~+'

(12)

as a measure of the beginning of little-island
overlap and magnetic braiding just inside the
separatrix.

Abel inversions of x-ray intensity oscillations
from the ST tokamak indicated, ' just prior to dis-
ruption, the presence of a magnetic island near
the q =2 surface of 4y = 3.5-4 cm full thickness.
With use of rn = 2, ~ = 1, z, = 8 cm, g = 109 cm,
dt/dr =0.4 cm ', and thus e =0.24 and X = —,', and
with A =0, simultaneous solution of Egs. (5) and
(12) shows that ™30/o of the interior area of the
rn = 2 island would be braided by the toroidal per-
turbation of the symmetry, close to the maximum
of (12) with respect to variation of e.
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The current associated with the self-generated magnetic field has been measured in
air and nitrogen at various pressures in a 4-J, 30-nsec-Nd-laser-produced plasma us-
ing a fast probe embedded in the copper target. The results reveal an active participa-
tion of the target in the current-flow process with anodic and cathodic regions, the
source of the current {magnetic field) being at the plasma-target interface.

Although the existence of large self-generated
magnetic fields in laser-produced plasmas has
been well established experimentally' ' and their
origin considered in a large number of theoreti-
cal papers, ' ' the currents associated with these
fields have only been determined by applying V
xa = p, oj to the magnetic field data. ' We present
here direct measurements, resolved in space and
time, of the distribution of current flow to and
from a target irradiated by a focused Nd-glass
laser beam.

Qur experiments were conducted in both air and
nitrogen at various pressures. The beam from a
Nd-glass laser (p. = 1.06 pm) was focused at nor-
mal incidence upon a flat copper target in an ex-
perimental chamber. The laser pulse was 4 J, 30
nsec (full width, half-energy). The focal-spot di-
ameter at the target surface (in the absence of
plasma), with a 10-cm lens, was 250 pm at balf-
energy, giving a power density of approximately
10" W/cm~.

The current flow through the plasma-target in-
terface was monitored, as shown in Fig. 1, using
a small wire probe (0.32 mm o.d.) embedded in
the target and insulated from it except at its end
where it is soldered to it. The wire probe is ter-
minated in the form of a loop so as to inductively
couple the element of current incident on the
probe surface to a small secondary coil. The

Possible
current paths

Probe radial
current distribution Ip

Laser pulse

/
/

I
I I

I 1
i ~

I
I
I
I
1
1 / ~ / - a ahaahha6

I I
I - —4' iiaiVQVPM Ip

Plasma

Target ~

&0 Ip&0

Probe

FIG. 1. Diagram showing the target with the wire
probe sampling part of the current flow through the
plasma-target interface.

transfer impedance of this arrangement is a mu-
tual inductance, the high-frequency response be-
ing limited by a pole because of the combination
of the total output inductance and the 50-0 termi-
nation. The experimental values are 4 x10 9 H
for the transfer inductance and 4 nsec (max) for
the equivalent time constant of the pole. There-
fore, by using this probe technique, direct oscil-
loscope display of dI/dt, the time rate of change
of the net current flow I through the probe-plas-
ma interface, is achieved. A notable advantage
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