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Polarization Rotation Induced by Resonant Two-Photon Dispersion
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A polarization-rotation effect is demonstrated which utilizes the dispersion associated
with 35-5S two-photon transitions in sodium vapor. A linearly polarized beam at v, is
rotated by a circularly polarized beam at ¥, when ¥; + v, is near the two-photon transition
frequency. When combined with a polarizer a rapid optical shutter is obtained.

Recently there has been considerable interest
in two-photon processes in atomic and molecular
vapors.! Until now, however, most experiments
have dealt only with the absorptive process, i.e.,
the imaginary part of the two-photon susceptibili-
ty. The dispersive part of the two-photon suscep-
tibility can also produce strong effects and many
new and important phenomena based on two-pho-
ton dispersion can be expected. We report here
on one such phenomenon. We have made mea-
surements of the polarization rotation which is
produced by the dispersion associated with an S-
to-S two-photon transition in an atomic vapor.
This rotation effect is unique to the two-photon
process and, unlike other effects of two-photon
dispersion such as self-defocusing,? it has no sin-
gle-photon analog.

A rotation of the polarization of a linearly po-
larized dye-laser beam of wavelength A, (signal
laser) is produced with a circularly polarized,
control-laser beam of wavelength 1,. The wave-
lengths are chosen such that the sum frequency
of the two lasers is near but not equal to the 3S
- 5S two-photon transition in atomic sodium. The
magnitude and resonant behavior of the effect is
found to be in good agreement with theory. When
combined with a polarizer, a fast, optically con-
trolled shutter or modulator is obtained.

Many phenomena which utilize the dispersion
associated with single-photon transitions in atom-
ic or molecular vapors have been previously
studied. Transient and cw self-focusing effects
have been investigated by Grischkowsky® and by
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Bjorkholm and Ashkin.* Gibbs, Churchill, and
Salamo® have reported Faraday-rotation angles
in excess of 180° which were produced in sodium
vapor in a magnetic field of 1 kG, and resonant
birefringence due to optically induced level shifts
has been reported by Bonch-Bruevich, Kostin,
and Khodovoi.® In addition the large dispersion
available with near-resonant atomic and molecu-
lar transitions has recently been used to produce
pulse compression and the conversion of cw light
into pulses by Grischkowsky,’ by Loy,® and by
Bjorkholm, Turner, and Pearson.’

A major limitation of phenomena arising from
single-photon dispersion is the requirement of
a near-resonant atomic or molecular transition.
This restriction is considerably relaxed when
one uses two-photon transitions. In a two-photon
transition we can picture the control-laser beam
at frequency v, as inducing the atom to exhibit an
absorption resonance at 2 —v,, where Q is the
two-photon transition frequency. From the Kra-
mers-Kronig relationships one finds a dispersion
associated with this induced absorption reso-
nance. The resonance frequency of this induced
absorption can be adjusted by adjusting the con-
trol-laser frequency, v,, and hence the need for
a chance coincidence with atomic transition fre-
quencies is removed.

The polarization-rotation effect reported here
is a result of the selection rules for two-photon
absorption. In particular, the selection rules'®
for S-to-S transitions in atomic vapors are such
that if circularly polarized photons are used, the
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two absorbed photons must have opposite senses
of circular polarization. Therefore, if the con-
trol-laser beam at v, is circularly polarized, a
two-photon, S-to-S transition will affect only one
of the two circularly polarized components of the
linearly polarized signal beam at v,. By correct-
ly adjusting v, such that Q - v, is nearly equal to
v,, the two-photon dispersion can produce a con-
siderable phase shift for the one circularly polar-
ized component of v, while avoiding significant
absorption of either beam. The result is a sim-
ple rotation of the direction of polarization of the
beam at v,. The rotation is similar to that ob-
tained in the Faraday effect; however, a magnet-
ic field is not required.
The rotation angle in radians is given by
1673IN 1 1
?Uogn “ne( v, -V, + v, — V">

T R3¢
v

I
Q=(v,+v,)’°

2

X

where I is the intensity of the control laser, I is
the length of the vapor cell, N is the vapor densi-
ty, i,, and p , are dipole matrix elements for
circularly polarized light, and the sum is taken
over all intermediate states with energies E
=hv,. In deriving this expression it is assumed
that the atomic and laser linewidths are small
compared to |v, —=v,|, [v,-v,|, and [Q = (v, +v,)].
Under these assumptions the speed of this rota-
tion phenomenon is limited only by the temporal
properties of the control-beam pulse.

In Fig. 1 we show a schematic diagram of the
experimental setup. The control and signal
beams were generated by two dye lasers which
were simultaneously pumped with a single N, la-
ser. The bandwidth of each laser was approxi-
mately 0.2 A. After passing through appropriate
polarizers the two beams were combined with
a beam splitter and passed collinearly through
approximately 5 cm of sodium vapor at a density
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FIG. 1. Experimental setup.

of 3.2x10*/ecm?® (~0.01 Torr). The vapor was
contained with 7 Torr of argon buffer gas. The
control beam was focused to about a 1-mm-diam
spot, while the signal beam was focused to ap-
proximately 0.2 mm so that there would be a fair-
ly uniform rotation of the signal-beam polariza-
tion. At the location of the sodium vapor cell,

the total peak powers of the control beam and sig-
nal beam were 1.5X 10* W (peak power density
1.5x10° W/ecm?) and 40 W (peak power density
5.5% 10* W/cm?), respectively. After passing
through the vapor, the signal beam was isolated
with a filter and detected with a fast photodiode
and a Tektronix 7904 oscilloscope. The combined
response time was less than 1 nsec. The signal
polarization was analyzed with a Glan polarizer.
The control-laser pulse had a duration (full width
at half-maximum) of 6.5 nsec while the signal-
laser pulse width was 4.5 nsec. The optical paths
from these lasers to the vapor cell were arranged
such that the signal-laser pulse arrived within
the control-laser pulse. All measurements of
rotation angle and transmission were made at the
peak of the control-laser pulse.

Because of the limited amount of control-laser
power available in our experiment, large rota-
tion angles (angles ~ 90°) could only be obtained
by adjusting the wavelengths of the two lasers for
(1) strong resonant enhancement!! of the two-pho-
ton transition by tuning the signal beam close to
the 3S,,,-3P,,, or 3S,,,-3P,,, intermediate-state
resonance and (2) strong dispersion by tuning the
control laser such that the sum frequency was
close to the 3S,,,-5S,,, two-photon resonance. In
principle, sufficient control-laser power could
produce large rotation angles for arbitrary mis-
tuning from these resonances. Self-focusing and
self-defocusing effects due to both the single-pho-
ton® and the two-photon? transitions were clearly
evident for tuning close to either the single- or
the two-photon transition. These effects were a
power-handling limitation in our experiment.

The dependence of rotation angle on control-
beam intensity is shown in Fig. 2. The signal
was tuned at 5891 A and the control laser at
6159 A, i.e., 1 A from both the 3P, intermedi-
ate-state resonance and the 3S—5S two-photon
resonance. The angle is seen to be linearly pro-
portional to the control-laser intensity with a
slope of 3.1x10"° deg/(W/cm?). In view of the
uncertainties involved in the measurements, this
value is in good agreement with a calculated 1.6
x107% deg/(W/cm?). The effects of self-focusing
or self-defocusing have not been taken into ac-
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FIG. 2. Intensity dependence of rotation angle and
transmission through crossed polarizer. Control and
signal dye lasers tuned such that the mistuning from
both the single-photon intermediate-state resonance
and the two-photon resonance is 1 A.

count in our calculation.

It is interesting to compare the rotation angle
or equivalently the phase retardation which is
measured here with that obtained with the elec-
tronic optical Kerr effect in glass. The phase
retardation of 3.1X107% deg/(W/cm?) for a path
length of 5 cm corresponds to an optical Kerr
coefficient, n,5, of 2.3X1071° esu. This value can
be compared to that in glass of 2xX107!% esu.'®
The large increase in the bulk nonlinear coeffi-
cient over that of glass is achieved in spite of a
vapor density 7 to 8 orders of magnitude less
than for solids and is a consequence of the reso-
nant enhancement of the two-photon dispersion.

Also shown in Fig. 2 is the transmission through
the Glan polarizer whose direction was crossed
to that of the original signal polarization. The
line drawn through the data points is sin®®. Again
there is good agreement between experiment and
theory. The deviation is probably due to the fi-
nite bandwidth of the lasers resulting in different
rotation angles for different spectral components,
nonuniformity in the intensity profile of the con-
trol-laser beam, and the effects of self-focusing.
The maximum transmission shown in Fig. 2 is
about 40%; however, transmission up to 70% has
been observed with this “shutter” in the open con-
dition and less than 0.1% in the “closed” position.
The latter was limited only by the quality of the
polarizers. Because of the longer duration of
the control-laser pulse relative to the signal-la-
ser pulse, the rotation experienced by the signal
pulse was nearly constant in time, and the signal
which passed through the crossed polarizer was
only slightly distorted. Its width showed a slight
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FIG. 3. Dependence of rotation angle on control-laser
wavelength, in terms of mistuning from exact two-pho-
ton resonance. Signal laser tuned at 5890.6 A and con-
trol-laser intensity is about 1.3 x 10 W/cm?.

decrease from 4.5 to 4.0 nsec.

In Fig. 3 the effect of tuning the control-laser
wavelength is shown. The signal laser is tuned
to 5890.55 A. The resonant character of the ob-
served dispersion is clearly evident and in good
qualitative agreement with theory; however, the
data show a reproducible asymmetry about the
wavelength of exact two-photon resonance. The
rotation angles on the short-wavelength side of
resonance are smaller than those obtained for
an equal mistuning on the long-wavelength side.
This asymmetry probably results from self-fo-
cusing effects. Both the two-photon and the sin-
gle-photon transitions lead to self-defocusing for
short wavelengths while on the long-wavelength
side the two-photon contribution and single-pho-
ton contribution tend to cancel. More detailed
experiments investigating these effects are in
progress.

In the region near exact two-photon resonance
the absorption of one circularly polarized com-
ponent of the linearly polarized signal beam is so
strong that the output is nearly 100% circularly
polarized. The transmission through the polar-

izer is therefore primarily a result of this re-

maining component, and we observed no preferen-
tial direction of linear polarization.

The polarization-rotation effect described here
is one of a new class of phenomena which utilize
two-photon dispersion. It is an electronic effect
whose speed is limited only by the temporal pro-
perties of the control-laser pulse, and it is pro-
duced in gas-phase media. Gases possess the
advantageous properties of tolerance to high op-
tical power densities, of transparency over wide
ranges of the electromagnetic spectrum, and of
ease of scaling to arbitrary physical dimensions.
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By choosing the atomic system and the frequency
of the control laser appropriately, it should be
possible to control beams from the far-infrared
to the vacuum ultraviolet. The rotation effect
also provides a sensitive technique for measuring
two-photon cross sections. Extensions of this
work to other schemes which use the two-photon
dispersion to provide pulse compression and re-
shaping are presently under investigation.
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Magnetic surfaces for a plasma with a helical current perturbation ~ ¢

2 are destroyed

by toroidal effects or by a second current perturbation, of incommensurate helicity, and
the behavior of magnetic field lines becomes stochastic in layers of relative width €™ ?x
exp(—~ m/2¢), where 1= 2|m/m| +1 with m and m, the azimuthal mode numbers of the orig-

inal helical field and of the perturbation.

This work considers how the magnetic surfaces
for a tokamak discharge are affected by helical
perturbations of the plasma current. Such cur-
rent perturbations are known to be associated
with resistive modes,"? and substantial experi-
mental evidence has been offered?® for the occur-
rence of magnetic islands* associated with non-
linear tearing instabilities.>® In this paper we
show that the existence of two such modes with
different helicity or the effect of toroidal geom-
etry on a single such mode leads to the destruc-
tion of magnetic surfaces. The resultant stochas-
tic wandering or “braiding” of the magnetic lines
can produce collisionless radial heat transport,
enhanced current penetration, and radial parti-
cle transport, and may change the inductance for
toroidal plasma current flow so that sudden on-
set of braiding would produce negative or posi-
tive spikes in the loop-voltage signal.”

The mechanism of magnetic-surface destruc-
tion® was first investigated in two classic papers
on magnetic irregularities,®!° where it was dem-
onstrated that a spectrum of overlapping reso-
nances produces stochastic wandering of the mag-
netic field lines. In this work we start with a
field of helical symmetry and exact magnetic sur-
faces which exhibits a single set of primary is-
lands, i.e., a single resonance at some ¥ =7, be-
tween the helical variation and the rotational
transform t(»). Weak asymmetry is introduced
via a first-order magnetic perturbation of differ-
ent helicity which might be due to toroidal effects
or to the presence of a second magnetic reso-
nance at » =¥,. The incommensurate perturba-
tion is found to produce little secondary islands
which appear wherever the Fourier components
of the perturbation resonate with the local trans-
form, w(k), Eq. (4), within the primary islands.
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