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An accurate numerical calculation of the projectile atomic-number dependence for K-
shell hole production by Coulomb excitation has been carried out through the two leading
terms in the plane-wave Born series. The calculation is restricted to velocities where
the projectile is slower than the target E-shell electron, but fast enough that Coulomb
deflection of the projectile is negligible. Agreement is found with experiments.

In this Letter we report on an accurate numeri-
cal calculation which shows that the dependence
of K-shell hole-production cross sections on pro-
jectile atomic number, Z~, at low velocity as ex-
perimentally determined is well reproduced by a
simple independent-particle model for the atom.
The importance of this result is that once the Z~
dependence of the cross section is established,
the ratio of the absolute cross section to the Born
cross section is known. This offers the intriguing
possibility of a two-step calculation which for the
first time would allow accurate absolute ioniza-
tion cross-section calculations for many-elec-
tron atoms. Firstly all the sophistication of a,

configuration-interaction calculation' would be
used to get the Born cross section, and then the
ratio calculation used to give the absolute cross
section.

In the past few years a series of experiments' 4

on K-shell hole production with projectiles of dif-
ferent atomic number but moving at the same ve-
locity, v, have provided a severe test for approx-
imation methods. ' ' The plane-wave Born series
develops the cross section as a series in Z~:

a (Z~) =n Z~'[I+Z~ p+O(Z~')j.

The n Z~' term is the usual first Born term, and
the Z&' term arises from interference between
the first and second Born terms in the amplitude.
The first Born, the Glauber, and the Cheshire
(distorted wave) approximations fail to fit the
data. ' In a recent paper' it has been shown how
to improve these standard treatments so that now
theory and experiment do agree, but the method
will not work unless the velocity of the projectile
is greater than the velocity of the target electron.
The calculation described here is accurate in the
lower velocity region. In principle we can raise
the energy of applicability of the method so we
can join onto the high-velocity regime, though
we have not yet done so.

If we wish to treat the K-shell vacancy produc-

and

I 2 Z„8
K~ = — V„2 — " +VS(r)+I»,

e

V =Z&e'/R -Z~e'/I R —rl,

R=(B,Z) =(B, vt).

Here B is the impact parameter of the projectile
moving with constant velocity, v, along the s ax-
is past an atom, atomic number Z„. The nucleus
of the atom is assumed to remain at rest at the
origin of coordinates. Initially, at Z=-~, (
=X,(x). Here y, (x) is the K-shell ground target
wave function and I& is the K-shell ionization en-
ergy. V,(r) is the so-called screening potential,
which accounts for the difference between the ef-
fective potential seen by the electron and the hy-
drogenic potential -Z„e'/x. The repulsive term
Z~e'/R is included for numerical convenience.
As we are treating the projectile as following a
constant-velocity classical path this term cannot
affect the cross section calculated. '

If one is prepared to neglect V,(r) (as we shall

tion beyond the first Born approximation it is es-
sential to understand the role the other electrons
play in refilling the K-shell hole or providing
holes in the Fermi sea for K-shell electron dep-
oslt10n.

It has been shown' that in the approximation of
an independent-particle model description of the
atom to get the total K-shell hole-production
cross section excluding charge transfer, one
simply calculates twice the cross section for a
single electron to be lifted above the Fermi sea
as if there were no other atomic electrons in in-
teraction with the projectile. We then have to
find the wave function g of a single-electron atom
being perturbed by a time-dependent interaction, '
where
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here) then this is a hydrogenic problem and it
would seem reasonable that one could apply all
the work done on proton-hydrogen codes to ana-
lyze the data. While this is undoubtedly true,
proton-hydrogen codes'~" are very sophisticated,
and time-consuming to run. We therefore sought
a. simpler procedure to take a,s much advantage
as possible of the fact that, unlike the proton-
hydrogen problem, here Z& is much less than Z„.

(1) We ignored all processes involving charge

transfer' of the electron to the projectile. This
is justified if the projectile charge is much less
than that of the atom. It is incorrect for proton-
hyd rogen.

(2) We diagonalized the target Hamiltonian H,
in a truncated basis set, u&'(r), giving a set of
states X, q as a linear combination of the u's with
eigenvalues Wq. This allows specific represen-
tation of the rapidly oscillating part of the time
dependence of the interaction potential" Vl, de-
fined by

(A l Vrl A. '& = exp(iH, Z/Sv)pl VlA. '& exp(- iH, Z/Kv) = exp[i(IV& —IV~.)Z/kv](A l Vl&'& .

cal
4

P

Iv
becomes large. To handle this problem the in-
tegrals were divided up into a sum of integrals
over subintervals. Then to evaluate the resulting
subinterval integrals, which are of the form

f,
""

exp(iM) f (f)dt,

we approximated f (t) on the subinterval by a
parabola and then did the resulting integral ex-
actly. " Care was taken to handle properly the
long-range parts of the potential matrix ele-
ments. For these calculations convergence was
obtained with an integration mesh of thirty to six-
ty points. Without this device 400 points are typ-
ically needed, rendering the storage problem im-
possible. On an IBM 360/65 it takes approxi-
mately 3 to 4 min to evaluate the potentials and
then approximately 1 to 2 min to calculate p at
each velocity. This is two orders of magnitude
faster than normal proton-hydrogen codes. 'o

In the present calculation only s and p states
were included. This restricts the maximum pro-
jectile velocity at which our calculations apply.
The approximate velocity at which d and higher
angular momentum states can be neglected was
estimated by using methods similar to those of
Merpbacher and I ewjs and pf Khandelwal tp
calculate the contribution to the first Born cross
section from s, p, and all angular momentum
final states. In cur calculations we kept nine s

u&' = r' exp(- c,r/a„[1 —e exp(iy&) j] .
Here a„ is the Bohr radius for a hydrogenic atom
of nuclear charge Z„. The y& are taken equally
spaced between 0 and 2m, and c~ is a constant de-
pending on the orbital angular momentum. For
s states co was 1 and for p states we tried c& as
1.5. We took e ranging from 0.5 to 0.9. It was
ensured that at least the hydrogenic ground state
and the occupied excited states were well repre-
sented.

The above basis, which is complete, has been
studied extensively for the proton-hydrogen prob-
lem. " It allows a tremendous simplification in
the calculation of the matrix elements of the po-
tential as opposed to a Slater-type basis because
each matrix element has exactly the same form
for different ~'s. In addition, the neglect of
charge exchange has the important consequence
that the matrix elements of the potential are in-
dependent of the energy of the projectile. Fur-
ther they depend only on the variable A (as op-
posed to 8 and B), apart from quickly calculable
terms like Z/R. This means we ean calculate
the matrix elements of our potential once and for
all and store them in a one-variable array in the
computer without taking too much space. Of
course, this is only true if a small number of
mesh points are needed to obtain convergence of

(3) We calculated only the first two terms in the Born series for the Z-shell hole production cross
section. "

With these restrictions one has to evaluate

o's. —4p(z&e /8'v) f"ada' l
f"P.lV, lo&dZI'

-4»g e'/&v)' f,"&dfl P ([f"„&&IVII&'&*«f„P'IVIIO&*dz'][f „(&IVrla&dz] —c.c). (
X,X'

Here the sum on A.
' is taken over all states in

our basis but A. runs over unoccupied states only. the integrals. In this regard a special numeri
The basis set used contained functions with radial problem is posed by the oscillatory integrands
part of the form" the oscillations become more severe as Z„e'/
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FIG. 1. Cross-section ratio p for Al as a function of
q' 2. BBLBS is the first paper in Ref. 2; BBL is the
second. The symbols in parentheses give the projectile
pairs from which the ratio was determined.

and eighteen p states. To establish the conver-
gence of our results with respect to change in
the basis we used up to 11 s and 28 p states, and
also did calculations with different choices of
y&, e, and c&. The change was less than 2%%uo. As
an additional check on the representation of the
continuum by the basis sets, we showed that they
gave good agreement (less than 2%%uo error) with
the exact s and p first Born ionization calcula-
tions.

In our hydrogenlike model the results simply
scale from one target atom to the other. The ap-
propriate variable q'" = tv/Z„e' is the ratio of
the velocity of the projectile to the velocity of the
K-shell electron. It can be seen from Eqs. (1)
and (6) that p is a function of q divided by Z„.
The only other effect in our calculations when
the target atom is changed is that the number of
occupied states to be excluded as final states
changes. This effect was included but is a small
one, especially at the higher projectile velocities
at which our results are reported.

The low-energy limit on our method is the fact
we have ignored any bending that the projectile
path suffers as a result of nuclear repulsion and
that only the two leading terms in the Born se-
ries have been retained.

In Figs. 1-3 we show our theoretical and ex-
perimental results for aluminum, nickel, and
carbon, respectively. We extracted p from the
experiments under the assumption that

Z~ "o (Z~)/Z~'a (Z~') = [1+Z~p]/[1+Z~'p] . (8)

FIG. 2. Cross section ratio for Ni, as in Fig. 1.

The agreement is excellent for Al, good for Ni,
and fair for C. It confirms the physical picture
given in Ref. 2 of two competing effects: in-
creased binding and polarization. The increased
discrepancy for carbon might be due to neglect
of charge transfer. But it is not clear that in-
cluding this would make matters better. Within
the Brinkman-Kramers approximation" the Z&
dependence at kigk eelociIies is Z~ . The addition
of such a term to o'(Z~) would certainly increase
the discrepancy. One could argue, however, that
the high-energy estimate is not reliable here.
Only a calculation including charge transfer will
settle the matter. Another possible explanation
is that higher-order terms in the Born series,

0.6

0.5

0.4-
0.3
0.2

O. I

0.0
-O. I

-0.2
-0.3—

4 ), .5

FIG. 3. Cross section ratio for C, as in Fig. 1. SS
is Ref. 3; WT is Ref. 4.
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neglected here, are important at the compara-
tively low velocities for C. In any case it is clear
that the simple scaling law given by the hydrogen-
ic model is breaking down somewhat as it does
not fit both aluminum and nickel. It is straight-
forward to diagonalize a Hartree-Fock Hamil-
tonian rather than a hydrogenic one and this wi11
be done next to see if this changes the Z„depen-
dence. A Hartree-Fock calculation will indeed
be essential for higher-shell ionization calcula-
tions where the wave functions are much more
sensitive to V, (r) Ne. vertheless, the agreement
with experiment is impressive considering the
simplicity of the approach. A real promise is
held out that reliable absolute cross sections can
soon be calculated including both effects of con-
figuration interaction and higher-order Born
terms.
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