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In view of the possible production of heavy leptons or charmed states in e*e” collisions,
we searched for anomalous muons with momenta <1 GeV/c, The inclusive cross sec-
tion for 7., = 3 has an upper limit of 96 pb (assuming isotropy). For 7.y =2 and noncopla-
narity >20°, an excess of muonic events is observed, corresponding to (do/dS)lye = 23 *13
pb/sr; the probability that known processes produce the observed events is 2X 1074,

Single- or double-lepton production has been
observed in hadron-hadron,' lepton-hadron,? and
e*e” collisions® with rates significantly higher
than expected from known physical processes.
We have examined our data* on e*e” collisions
for the occurrence of anomalous high-energy mu-
ons. This search addresses in particular the
questions of production of heavy leptons® and
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charmed states® since both, if produced, would
give rise to decay muons.

In this Letter, we report on muons with p,
= 1.05 GeV/c from e*e” collisions at Vs =4.8
GeV. Following a description of the apparatus,
centering on its muon-detection characteristics,
we discuss the yu events and compare them with
quantum-electrodynamic (QED) predictions. We
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then discuss anomalous muons in two catego-
ries of events: (i) events where more than two
charged particles were detected (n,> 3), and
(ii) events with only two charged particles (ny,
=2). .
A plan view of the experimental apparatus is
shown in Fig. 1. The apparatus was designed to
study the inclusive particle spectra in e*e” col-
lisions and is described in detail elsewhere.*
Muon events were selected by the single-arm
magnetic spectrometer covering 0.1 sr. The
muon signature required that a particle trigger

a threshold Cherenkov counter, produce mini-
mum-ionizing pulses in a five-layer shower
counter, and traverse a hadron filter consisting
of 69 cm of iron and three planes of five scintil-
lation counters each, placed side by side. The
momentum needed by the muon to penetrate the
iron was ~ 1.05 GeV/c, the exact value depend-
ing on angle of incidence, scattering, and strag-
gling.” A similar shower counter and hadron fil-
ter, covering, respectively, 2.5 and 1.7 sr on
the opposite side of the interaction region, iden-
tified back-to-back electrons and muons. Multi-
wire proportional chambers were used for parti-
cle detection. The spectrometer momentum res-
olution was + 1% at 2.4 GeV, and the angular res-
olution for particles going toward the hadron fil-
ters was + 0.3°. In addition, a large-solid-angle
central detector (= 99% of 47 with an average ef-
ficiency of 98% for track detection) composed of
three proportional planes surrounded the inter-
action region. This central detector measured
only the azimuthal angle of charged tracks, to a
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Fig. 1. Plan view of the experimental apparatus.

precision of + 3°.

Muons are produced predominantly by the re-
action e*e” - u*u”. The cross section is known
to agree with QED for small noncollinearities.®
We defined pyu events by requiring that both back-
to-back muons penetrate a hadron filter and com-
pared our sample of 190 events with QED. The
acceptance of our hadron filters imposed a non-
collinearity limit of 30°, within which all uu
events could be identified. The e noncollinear-
ity-angle distribution is shown in Fig. 2. The
QED curve in the figure was calculated using the
program of Berends, Gaemers, and Gastman,®
with the requirement that each muon have total
energy E, >1.0 GeV, and was normalized to the
number of events having noncollinearity <3°. The
observed distribution at angles greater than 3° is
seen to agree with QED (x®="17.7 for 9 degrees of
freedom). Based on this normalization, the in-
tegrated luminosity for our data sample is 3.84
+0.31 pb~t.

The first category of events we discuss is de-
fined by one particle with p>1.05 GeV/c travers-
ing the spectrometer and at least two additional
particles in the central detector. This sample
contains 73 events; 71 have a hadron identified
in the spectrometer and two have a muon (ngy,
=3,8).)° These muon events could come from
hadron misidentification because of iron penetra-
tion or decay, or from direct-muon-production
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Fig. 2, Noncollinearity distribution out to 30° for
ete™ = ptuTy at Vs=4,8 GeV (angular resolution *+ 0.3°),
Both muons required to penetrate <69 cm Fe. QED
curve from Ref, 9 (x2=17.7 for 9 degrees of freedom),
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processes. The expected hadron penetration of
the Fe absorber was obtained from the experi-
mentally determined momentum-dependent atten-
uation probability!! for each of the 71 observed
hadron events,* including range, scattering, and
straggling; the result is 1.3 events. The back-
ground from 7-u decays was obtained by calculat-
ing the probability for each observed pion* to de-
cay to a muon with p, >1.05 GeV/c; this source
yields 1.8 events. The number of K-u decays
passing our event selection criteria was found by
Monte Carlo studies to be negligible. The direct-
muon-production processes we have considered
are the virtual yy process e*e” - u*u“e*e”, and
the radiative tails of the ¥ and ¥’ particles.'* The
first reaction has been studied by Grammer and
Kinoshita.'® The effective cross section was cal-
culated for our geometry and conditions with a
resultant contribution of 2.0 events for ny=3 or
4. The process e*e” = - nir"u*u” yields 0.2
events. The total expected background is there-
fore 5.3 events, consistent with the two events
observed. Based on these two events, the pre-
dicted upper limit for u production is 6.3 events
with 95% confidence. This is one event above ex-
pected background, corresponding to a direct-
muon-production cross section in multiparticle
events with p, 2 1.05 GeV/c of (do/df)| 40 =2.5
pb/sr. Assuming instead that the two observed
events are background, the upper limit to the
same direct-muon cross section is 7.5 pb/sr
with 95% confidence; assuming isotropy, this
yields a total inclusive cross section of 96 pb.
The second category of events to be discussed
consists of events with only two charged parti-
cles, one of which traversed the spectrometer
with momentum p, = 1.05 GeV/c and was tagged
as a muon. The distribution of noncoplanarity
angle ¢ for these events is presented in Fig. 3(a).
The second particle in the events marked “x” in
the figure could not be identified. The eleven “x”
events with noncoplanarity less than 30° have a
nonpenetrating particle in the conjugate appara-
tus. Seven of these have angles such that they do
not pass through the hadron filter. All are con-
sistent with minimum ionizing particles in the
shower counters. They could be muons or had-
rons or even electrons with energy < 400 MeV.
The QED curve was calculated using a second
program of Berends, Gaemers, and Gastman®
with total energy thresholds for muons of 1000
and 115 MeV (the minimum energy for a muon to
be detected) and using the previously determined
integrated luminosity. The distribution for ¢
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FIG. 3. (a) Noncoplanarity distribution for two-prong
events having at least one muon penetrating < 69 cm Fe
(average angular resolution +1°), The second prong is
not identified for events marked with an “X”, QED
curve from Ref, 9. (b) Muon momentum distribution
for events with ¢ >20°, ‘

<20° is in fair agreement with QED, whereas at
larger angles an excess of events is evident. The
total number of events with ¢ >20° is thirteen.

The spectrometer muon momentum distribution
for the thirteen events is shown in Fig. 3(b). (On-
ly one of these events appears in the noncollinear-
ity distribution, Fig. 2.)

The thirteen events with ¢ >20° are not account-
ed for by QED processes or hadronic background.
Integration of the QED differential noncoplanarity
cross section over angles ¢ >20° gives a total of
3.0 events.” The number of events with py>1.05
GeV/c from the process ee —ee . with only two
particles in the central dectector was found to be
negligible. Based on a total of eighteen hadronic
events® !® with n4=2 and ¢ >20°, the number of
background events due to 7 and K decay was found
to be 0.5 and the number of hadrons expected to
penetrate the Fe absorber was 0.4."'* We also
investigated the probability that random tracks
simulate noncoplanar px events and found it to be
negligible. Thus 3.9 events out of the thirteen
can be accounted for. The probability that the ex-
tra nine events observed are a result of statisti-
cal fluctuation is 2x 10"%. The inclusive cross
section corresponding to the nine events is (do/
dQ)lge0 =23%12 pb/sr. The assumption of isotropy
gives a total muon inclusive cross section of
285% 135 pb.

In order to see if these results are compatible
with the p-e cross section reported by the SLAC-
LBL collaboration,® we can make two compari-
sons. One is for the total cross sections; the
other is for those events in our experiment that
could be tagged specifically as p-e. (The shower
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counter opposite to the spectrometer would have
identified these p-e events, if the particles had
noncollinearity < 40° and energy = 400 MeV.) The
first comparison shows our total cross sections
to be considerably larger than their observed p-
e cross section (~20 pb), but the strong effects
of having different final states and different angu-
lar and momentum cuts make a comparison of
these results somewhat model dependent. The
second comparison, still crude, suggests that
we could only expect ~ 0.3 events as identified u-
e’s, which is consistent with our observation of
none. Our limit on the cross section for p-e
events, given our noncollinearity and momentum
cuts, is (do/dQ)|g,0 < 7.5 pb/sr with 95% confi-
dence. Thus these comparisons indicate that
while our equipment is not sensitive to the spe-
cific u-e signature at its published value, we are
sensitive to the more general p-x process and
have detected a significant signal of this type.

In summary, we find that inclusive muon pro-
duction above 1.05 GeV/c in multiparticle (n,
= 3) events is small; we set a new upper limit
for the total inclusive cross section assuming
isotropy.'” We detect small but significant pro-
duction of muons within the same momentum cut
in ny,=2 events that is not explained by back-
ground or known QED processes.
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