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The first-order nature of the antiferromagnetic transitions in Cr, Eu, UO2, and MnO
can be explained by noting that the corresponding Landau-Ginzburg-Wilson Hamiltonians
possess no stable fixed points in 4- e dimensions. We predict that all fcc type-I (mj.k),
type-II, and type-III (m & (100),k= ()01)) antiferromagnetic transitions are first order.

According to universality, critical behavior
should depend only upon a small number of a sys-
tem's properties, such as the spatial dimension-
ality, the number of components of the order-pa-
rameter, and the symmetry of the Hamiltonian.
In recent years much progress has been made in

grouping together second-order transitions into
universality classes. The relation between a
system's symmetry properties and its phase
transitions can be studied using I andau's' phe-
nomenologieal theory. The Landau theory has
been extended to include effects of fluctuations
by using Wilson's' e expansion. In fact, the re-
normalization-group approach introduced by Wil-
son and Kogut' provides a general formalism in
which the ideas of universality and scaling are
given a unified treatment. The e expansion is a
perturbation theory enabling one to compute uni-
versal quantities such as critical exponents di-
rectly from renormalization-group equations. In
this note we wish to consider the intriguing ques-
tion as to whether symmetry considerations are
not only useful to classify second-order transi-
tions, but are also sufficient to predict that cer-
tain phase transitions are first order. We have
used the group-theoretical method of Landau and
Lifshitz to construct effective Hamiltonians de-
scribing certain antiferromagnetic order-disor-
der transitions which have order parameters
with n ~4 components, ' and we have then per-
formed a renormalization-group analysis in 4 —e

dimensions. 4 We have found systems for which
the renormalization-group equations in 4 —e di-
mensions possess no stable fixed points. ' The
question naturally arises as to whether the lack
of a stable fixed point within the e expansion im-
plies the transition is first order. In this paper
we present support for this rule and we propose
specific experiments to test it.

According to the theory of Landau and Lifshitz
the symmetry-breaking order parameter associ-
ated with a second-order transition transforms
according to an irreducible representation R of

the symmetry group G, of the disordered phase.
Using Landau symmetry arguments one can im-
mediately predict three classes of order-dis-
order transitions expected to be first order (bar-
ring the simultaneous vanishing of two or more
coefficients not related by symmetry):

(1) If the symmetric part of R', denoted [R'],
contains the identity representation, i.e., [R ]
& 8, then the Landau expansion includes third-
order invariants and the transition is predicted
to be first order.

(2) Transitions for which the order-parameter
transforms according to a reducible representa-
tion of G, are expected to be first order.

(3) If the direct product of the antisymmetric
part of R', denoted IR'}, and the vector repre-
sentation contains the identity representation,
i.e. , (R'] V DE, and if the propagation vector
k of the low-temperature phase is temperature
independent, then the transition is predicted to
be first order. Such transitions might be ex-
pected to result in a commensurate low-tempera-
ture phase. '

When none of these three criteria are satisfied,
then the transition may be either first order or
second order, depending on the values of the co-
efficients in the Landau expansion. We wish to
propose a fourth phenomenological rule which
will be predictive in certain eases when the above
Landau symmetry criteria are not.

(4) If there is no stable fixed Point within the
e expansion then the transition is first order.

Symmetry does not allow the existence of third-
order invariants for the magnetic systems we
consider, so rule (1) is not predictive. Rule (2)
predicts first-order transitions in the type-II
antiferromagnets' DySb and HoSb where the mag-
netic moment lies along the [001] direction, with
components both parallel and perpendicular to
the propagation vector k. The order parameter
for these systems has twelve independent com-
ponents and belongs to two irreducible represen-
tations. The transition in DySb is known to be
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first order, ' while the nature of the transition in
HoSb is not well established.

The antiferromagnetic transition in MnBr, is
associated with a temperature-independent propa-
gation vector k =

[W4 J. Since the representation
R satisfies (R') @V& E, , rule (3) predicts the
transition to be first order in agreement with

experiment.
Transitions not involving a change in the unit

cell are described by n &3 component order pa-
rameters, while certain phase transitions which
involve a change of the unit cell are described by
n ~ 4 component order parameters. ' Brezin, Le-
Guillou, and Zinn-Justin' have noted that the iso-
tropic fixed point is always stable for n & 3 sys-
tems in 4 —e dimensions. We have found five
different n ~ 4 component Hamiltonians for which
there exist no stable fixed points in 4 —e dimen-
sions, and rule (4) suggests the corresponding
transitions are first order. We now describe the

physical systems corresponding to these Hamil-
tonians:

Type-I antiferromagnets m J.'k (e.g. , UO, 'o).
These are fcc crystals with space group Fm3m

exhibiting an antiferromagnetic structure with

propagation vector k, = [100] and magnetization
perpendicular to k, . The star of k, consists of
the three vectors: k, = [100], k, = [010], and k,
= [001]. Two components of the order parameter
are associated with each R; (i = 1, 2, 3), corre-
sponding to the two independent directions of the
magnetization in the plane perpendicular to k;.
The transition is described by a six-component
Hamiltonian constructed from the five indepen-
dent fourth-order invariants which can be formed
from the order parameter. The transition in UQ,
is known to be first order. '

Type-II antiferromagnets mL k (e.g. , M«,
&io,~' MnSe, ~~ ErSb, ~ EuTe ).—These are fcc
crystals with space group An3m whose ordered
state is composed of ferromagnetic (111)planes
coupled antiferromagnetically. The magnetiza-
tion is perpendicular to the propagation vector
k, = [2-,'2] and the star of k, consists of the four

22] Two components of the order pa-
rameter are associated with each k, (i = 1, ..., 4),
corresponding to the two independent directions
of the magnetization in the plane perpendicular
to k, The eight-component Hamiltonian is con-
structed from the six fourth-order invariants
which can be formed from the order parameter.
It has recently been shown" that MnO indeed has
a first-order transition. The nature of the trans-

itions in Nio and MnSe are not yet well estab-
lished. Measurements of the order parameter"
of ErSb indicate the tr. ansition is second order,
but specific-heat measurements" indicate there
may exist a latent heat. We urge that further
experimental work be done on ErSb.

Type-II antiferromagnets m
~~
k (e.g. , TbAs,

TbSb, TbP~).—Since the magnetization is par-
allel to the propagation vector, the order param-
eter has four independent components correspond-
ing to k, (i =1, ..., 4), and the effective Hamilton-
ian is constructed from the three fourth-order
invariants which can be formed from the order
parameter. Previous measurements' on these
systems have been performed far below the trans-
ition temperature with the objective of determin-
ing the ordered state. We suggest it is worth-
while to study these substances very close to the
transition temperature to see if the transition is
first order.

Type-III antiferromagnets m J.[100], k = [—,'01].
—These are fcc crystals with space group
Frn3m, exhibiting an antiferromagnetic order in
which the nonprimative unit cell is doubled in
the x direction (corresponds to k, = [—,'01]) and in
this case the magnetization is perpendicular to
the x axis. The star of k, consists of the six vec-
tors +k, =+[—'01], +k, = + [1-'0], and +k, =+ [012].
There is only one compound, P-MnS, "which ex-
hibits this type-III structure, but its paramag-
netic space group is F43', a subgroup of Fm3m.
The corresponding n = 12 representation is re-
ducible (12 = 6+6), so the transition is predicted
to be first order by Landau rule (2). The nature
of the transition in P-MnS is not known and we
feel it is of interest to test whether it is first
order.

pr. '"'~8—This is a bcc crystal with space group
Im3m exhibiting a transverse sinusoidal magnetic
structure with propagation vector k, = [k00]. The
star of k, consists of the six vectors +k, = + [k00],
+k2 =+ [Ok0], and +k, =+ [00k]. Two components
of the order parameter are associated with each
k vector, corresponding to the two independent
directions of the magnetization. The twelve-com-
ponent Hamiltonian is constructed from the seven
fourth-order invariants which can be formed from
the order parameter. The phase transition in Cr
is known to be first order.

Eu. ~~—This is also a bcc crystal and it exhibits
a spiral magnetic order corresponding to a propa-
gation vector k, = [k00]. The order-parameter
and Hamiltonian are the same as for Cr. Moss-
bauer effect and specific-heat measurements"
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show that the phase transition in Eu is first order.
The first-order transition in Cr has puzzled

theorists for years. The discontinuous nature of
the transition was discovered by Arrott, Werner,
and Kindrick" over a decade ago, and despite
numerous attempts to clarify the origin of the
transition using various microscopic models to-
gether with mean-field-like theories, no satis-
factory explanation has yet been reported. Simi-
larly, the first-order transition in UO, "has de-
fied explanation. Blume" tentatively proposed
that the transition could be explained by a model
assuming a singlet ground state, but it was later
found that the ground state was not a singlet. In
mean-field theory one is trying to find a physical-
ly reasonable mechanism for making the fourth-
order coefficient in the corresponding Landau-
type expansion negative. This has proved diffi-
cult and may be impossible for these systems.

Our main point is that even if the Landau theory
(or mean-field theory) predicts a second-order
transition, the e expansion may imply the transi-
tion is first order. " If this is the case it is not
necessary to discover a microscopic mechanism
to explain the first-order nature of these transi-
tions. Despite a comprehensive search through
the literature, we have found no well-established
ferromagnetic first-order transitions. Let us
note that if one were to observe a first-order
transition in a ferromagnet, then rule (4) could
never be invoked to explain it, because ferro-
magnets are described by n ~ 3 component models

for which the isotropic fixed point is always
stable. '

First-order magnetic transitions from a disor-
dered state to an ordered state which are not ex-
plained by Landau's arguments (2) and (3) are
quite rare. In fact, the physical systems we have
found corresponding to Hamiltonians with no sta-
ble fixed points exhaust many, and possibly all,
of such known first-order transitions. In Table
I, we list the materials corresponding to Hamil-
tonians with no stable fixed points and we distin-
guish those systems for which the transitions are
known to be first order from those in which the
nature of the transitions has yet to be determined.
We predict these systems will all have first-or-
der transitions and urge that experiments be per-
formed to test our results. It would be interest-
ing to investigate whether the systems which are
predicted to be first order because of the lack of
a stable fixed point behave differently from sys-
tems predicted to be first-order by Landau argu-
ments. The agreement of our results with exist-
ing experiments lends support to the idea that the
symmetry criteria for the absence of a stable
fixed point in 4 —e dimensions may be the same
as in three dimensions. It would be of great in-
terest to find a group-theoretical criterion for
the absence of a stable fixed point in 4 —c dimen-
sions.
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TABLE I. Physical systems corresponding to Hamiltonians with no stable fixed points.

Antiferromagnetic Number of components Systems known to Systems predicted
order of order parameter be first order to be first order

Type I (ms K)

Type II (mxk)

Type II (m&k)

Type III
(m ll [100),k= [201])

Sinusoidal
(m~k = [koo])

Screw spiral
(m~k = [k001)

n=6
n=4

n —12

)s =12

n =12

UOR

MnO

Eu

TbAs, TbSb, TbP, b

CeS, TbSe, NdSe,
NdTe~

NiO, ~ Mnse, '
n-MnS, Erp,
ErSb, EuTe&

'Ref. 10.
Ref. 6.
Ref. 12.

Refs. 11, 13.
Ref. 11.
Re. . 16.

I'Ref. 22.
Refs. 17, 18.

'Ref. 19.
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