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FIG. 3. Double exponential fit to do/d2 values for
present data.

In conclusion, we believe that the validity of
our results is supported by the high degree of in-
ternal consistency in our data and the good value
for the pion-nucleon coupling constant derived
from the shape of the backward peak. This cou-
pled with the excellent statistical accuracy and
the large number of points should be of great val-
ue in obtaining a meaningful phase-shift analysis
for n-p scattering at this energy.
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Interplay of Confinement and Decay in the Spectrum of Charmonium*
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The spectrum of charmonium in the presence of a charmed-meson continuum is investi-
gated. Radiative rates are in considerably better agreement with data than for the naive
model, the largest discrepancy being a factor 2—3 for P =y + 3P0- The model accounts
for the peak at ~ 4.2 GeV in o(ee — had), and predicts a further peak at ~ 3.75 GeV due to
1°Dy. The latter would be the most favorable location for a charm search in ee collisions.

The interpretation' of the ¥ resonances as
bound states of charmed quark pairs (cC) has en-
joyed considerable success. In particular, the
prediction®"* that P states lie between ¥ and ¥’
may be confirmed by recent observations,*® and
the expected 'S ground state 7, may also have
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been discovered.” Nevertheless, the naive model
must be modified substantially near and above
the charm threshold W, due to coupling to decay
channels. We have generalized the model to in-
corporate such effects.® Our method provides a
comprehensive approach to the interplay between
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confinement and decay in meson spectroscopy.

Before reporting our results,® we must come
to grips with two aspects of the data that could be
in conflict with the model’s basic assumptions:

(I) R=o(eg~had)/o(ee~ LE) has an observed
asymptote!® of =~ 5.5 which greatly exceeds the
theoretical value of 335. This would pose a seri-
ous problem were it not for the indication!! that
there is a new leptonic threshold below 4 GeV.
We accept this interpretation of the data, and as-
sume that the remaining discrepancy between
~ 4.5 and 35 can be ascribed to the corrections
to asymptotic freedom.

(IT) The ¥-n, splitting appears to be” =~ 300 MeV,
which is much larger than the original estimate,!
and the splitting of the intermediate y multiplet
is also large.® Can these facts be accommodated
by the corrections to the nonrelativistic model?
A re-examination'? of this question with our po-
tential® yields a -1, splitting of 120~160 MeV,
and P -state splittings of 100-150 MeV, the latter
in adequate agreement with the observed® x(3.51)-
x(3.41) interval. Qualitative consistency with the
model can therefore be attained by assigning'®
the natural spin-parity state x(3.41) to 3P,, and
x(3.51) to ®P,; P, would then be expected at =~ 3.6
GeV, above any of the X’s presently seen, while
x(3.53) would be assigned to 2'S (=17,’). Another
possibility is that x(3.53) contains both P, and
7.’; this is favored by a comparison of the data
with our decay rates (see Table II), but it is in-
consistent with existing models of the spin forc-
es.

We now turn to those problems to which the
present work is addressed: (A) The electromag-
netic decays of 3’ do not agree with the original
estimates®: The observed strengths>®!415 for
Y’ ~yx are several times smaller than predicted,
and'® I',(y")=2.1+0.3 keV, in contrast to the the-
oretical value of 3.0-3.4 keV. (B) The naive
model has further S, (and 3D,) states that obvi-
ously lie above the threshold W,. One of these,
3%S,, is presumably the broad peak!” in R at =~ 4.1
GeV. But as it stands, the model does not handle
the decay of such states, nor the structure of
cross sections above W,.

As ' appears to be very close to W, it may
also be unrealistic to describe it as a pure ¢€
state; problems (A) and (B) therefore require a
unified treatment.

For this purpose we propose a unified model
of confinement and decay based on a universal
instantaneous interaction between quark color

densities pg:
8
Hp==73 [ d® @' 25 :p,E)U F=-F)pa(F): .
a=1

Here U =47/3a? is the linear!® potential of the
naive model. Hopefully H; simulates the interac-
tion due to a colored gauge field.

When the quark fields in p, are decomposed in-
to destruction and creation operators, H; sepa-
rates into a variety of terms. The one in the cC
sector gives the naive charmonium spectrum,
while that in the'® ¢g sector binds the charmed
mesons D, F, etc. There is also a term linking
the c¢€ and (cq, €q) sectors, which gives the de~
cay amplitudes allowed by the Okubo-Zweig-Iizu-
ka rule. Thus the bound states and decay ampli-
tudes are, in principle, determined by a single
interaction.?® Since decay leads to level shifts,
the parameters m, and a have to be readjusted
by fitting to the ¥-y’ mass difference, and T, ().

All quantities of interest can be extracted from
the resolvent §(z) =P 4(z —~H)"'P,, where P, pro-
jects onto the ¢T sector. Thus Im{» = 0|§(W +:0)
X |7 = 0) gives the probability of finding a c¢€ pair
at zero separation, and hence the contribution 6R
of charm to R. The poles of § below W, locate
the bound states, and their residues locate the
wave functions as modified by virtual decay.
From § one can easily compute amplitudes for
processes such as DD - FF or eg-DD.

We first evaluate § in the 17" sector by the fol-
lowing steps: (a) reduction of terms in H; to
their nonrelativistic limits; (b) evaluation of ei-
genvalues and eigenfunctions in a ¢€ subspace
3, with input parameters a and m,; (c) evalua-
tion of the Zweig-allowed?* decay amplitudes W
=PcH; Py, where P; projects onto a subspace
¥ of the (cqg, cq) sector; we take ¥ to contain
all combinations of D, D* - F, F*; (d) solution
of

8=G4+G,w'Gowg,

where?* Gy,=(@2 —P,HP,)"!; (e) readjustment of
m, and a; (f) enlargement of 34 until § stabilizes
in the energy regime of interest. Having solved
the 17" sector, we then use the same parame-
ters®® to evaluate § in the 3P, sectors.

The replacement of a complete set of (cq, cq)
states by the subspace ¥C; is an increasingly du-
bious approximation as the energy rises. It is
also unlikely that dynamic relativistic effects
can be ignored in the decay sector, even if they
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TABLE I. Modification of states due to decay. The
numbers listed under the various states give their
norms in the ¢¢ sector.

W, ‘ @)
(GeV) P, ’p, p, 238, (keV)

3.70 0.68 0.75 0.79 0.58 3.6
3.75 0.71 0.76 0.79 0.67 4.1

are only of secondary importance in the ¢C sec-
tor. For these reasons our calculations can only
be trustworthy for relatively low energies, hope-
fully W=<4.6 GeV.

In brief, our principal results are these:

(1) Although energy shifts due to virtual decay
are quite large,?® the “renormalized” bound state
spectrum does not differ markedly from that of
the naive model. In particular, the 3P center of
gravity is at 3.44 GeV. P-state splittings due to
virtual decay'® are only =~ 15 MeV.

(2) The states |3P ;) and |¢’) are strongly modi-
fied by virtual decay, but this effect is not sensi-
tive to the threshold (see Table I).

(3) The modification of ¥’ does not produce the
desired reduction of I',(y’) to 2.1+ 0.3 keV (see
Table I).

(4) Calculated E1 rates are given in Table II.
Decay effects strongly suppress some strengths

TABLE II. Radiative transitions. We set W, =3.70
GeV. If W, =3.75 GeV, then I'j=28 keV, I';=14 keV,
and I'y=18 or 3 keV.

E1 transitions®P

W' 3P, J=0 J=1 J=2
Az 1.04 1.04 1.04
Adecay 0.78 0.39 0.39
pai -0.12 -0.05 -0.11
Sx 108 1.93 1.98 4.46
S/S, 0.92 0.31 0.42
r, 36 keV 9.7 keV 15 or 2.6 keV®
M1 transitions?
P10, P, P —=mn’
T 22 keV 10 keV 2 keV

34z, Adecay> 20d A ;. are 255, — 23p; amplitudes
in the cc¢ sector, that in the decay sector, and that due
to the pair creation term in the current. S is the total
strength in GeV~?; it also includes mixing of different
S, P, and D states. S is the strength in the naive mod-
el.

bprip,—y) =90, 230, and 280 keV for J =0, 1,2, with
M(3P,)=3.53 GeV.

°r, for M(®P,)=3.53 or 3.60 GeV, respectively.

d Assumed masses for N, and .’ are 2.80 and 3.53
GeV.
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FIG. 1. R above the charm threshold, taken as W,
=3.70 GeV. A “background” of 2.5 for noncharmed
final states is included. The peak at 3.75 GeV is a °D,
resonance, that at 4.2 GeV is 3%S;. Solid points are
from Ref. 17, open points preliminary data from Ref.
10.

(see S/S,). E1 rates are in good agreement with
present experimental indications for transitions
to °P, and ®P,, and a factor of ~2-3 too large for
%p,. (Even in atomic physics it is difficult to
compute E1 strengths quantitatively.?*)

(5) Because of virtual decay, the radial 1S and
2S cc wave functions are not exactly orthogonal,
and the suppression® of §’ —y 1, is no longer so
drastic. Our rate for -y, is somewhat too
large (see Table II).

(6) R is shown in Fig. 1. The peak at ~3.75
GeV is the first 3D, state already predicted in
Ref. 3. Its precise location, width, and area are
sensitive to the threshold and the spin-dependent
forces.'*'® To our knowledge, such a peak is not
ruled out by the present data. The prominent
peak at ~4.2 GeV is 33S,. There is also a sharp
D resonance at ~4.6 GeV (see Fig. 2); it is not
revealed in R because in this region our decay
amplitudes produce large interference effects
with neighboring levels. The peak at ~4.2 GeV
and the °D,(4.6) resonance will shift downwards
if further charmed thresholds are included (3.
is enlarged); this may also provide stronger e*e
coupling to the second D, resonance. Clearly
the observed peak at ~4.1 is 33S,; presumably
the peak at ~4.4 GeV is the second D resonance.

(7) The most favorable reaction for finding
charm at a storage ring is ee—~DD. Our calcula~
tions show that this process is unimportant ex-
cept near threshold; for example, the 4.1 reso-
nance decays mainly (% ) into D*D*. It is there-
fore important to search for the ®D, resonance
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FIG. 2. The 1°~ DD S matrix. The resonances at
~3.775 and ~4.175 GeV are the °D, and %S, states of Fig.
1. The inelastic resonance at ~4.60 GeV is a °D, state
that does not appear in R because of interference with
other levels.

shown in Fig. 1 as it would provide a copious
source of slow DD pairs.

Given our ignorance about charmed particles
and the spin-dependent forces, one cannot expect
quantitative agreement with the data. We there-
fore view these results as encouraging. They
show that by incorporating decay effects one at-
tains a greatly improved rendition of the data,
and a first understanding of the dynamics and
composition of charmed final states.
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Features of Diffraction Dissociation of Neutrons in #p Collisions at 50-300 GeV/c*
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We present preliminary results from an investigation of the reactionz +p — (p77) +p
for neutron momenta in the range of 50 to 300 GeV/c. The data display a strong correla-
tion between the mass of the pr~ system and the four-momentum transferred in the pro-
duction, Cross sections for producing low-mass (pn~) systems are independent of ener-

gy to within 10% accuracy.

We have measured the dissociation of neutrons
into (pm~) systems using a variety of nuclear tar-
gets ranging from hydrogen to uranium. The da-
ta are from an experiment performed in the 1-
mrad M -3 neutral-beam line of the Fermi Nation-
al Accelerator Laboratory. In this Letter we will
discuss the properties of the dissociation process
as observed using a hydrogen target. We report,
in particular, on the reaction

n+p-~(pn ) +p (1)

for neutron momenta between 50 and 300 GeV/c.!
A schematic diagram of the apparatus is given
in Fig. 1(a). The hydrogen target consists of a
cylindrical high-pressure vessel. (Data were
taken at operating gas pressures of 750 and 1250
Ib/in.?) The active target region is 20 in. in
length and 3.5 in. in diameter; it is defined by a
thin veto counter (4,) at the upstream end, by a
downstream counter (S), and by a set of sixteen
plastic scintillator strips, each 20 in. long, % in.
thick, and ¥ in. wide, positioned azimuthally
about the active region at a distance of 12 in.
from the beam axis [see Fig. 1(b)]. All of the
scintillators are contained within the high-pres-
sure volume and are connected optically through
acrylic light pipes to photomultiplier tubes locat-
ed outside of the high-pressure vessel.? Photo-
multiplier signals from both ends of each of the
sixteen azimuthal scintillator strips are pulse-
height analyzed and this information is used off
line to calculate the spatial location of the inter-
action vertex point, as well as to obtain a mea-
sure of the energy of the recoil proton in Reac-
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tion (1). A total of thirty spark chamber planes,
read out magnetostrictively at both ends of each
of the planes, provided substantial redundancy
checks for background rejection; the effective
spatial resolution of the chambers was +0.3 mm.

Trigger requirements were designed to strong-
ly favor Reaction (1) and to suppress multiparti-
cle production processes. The trigger was satis-
fied under the following conditions: (1) no charged
particle entered the target region (4, counter);
(2) only one of the sixteen azimuthal scintillation
counters surrounding the target region had a sig-
nal; (3) at least one charged particle emerged
from the sensitive region of the hydrogen target,
activating the S counter; (4) no charged (or con-
verted neutral) particle was detected in any of
the lead-scintillator —sandwich anticoincidence
counters located downstream of the target, and
positioned so as to shadow the area surrounding
the magnet aperture; and (5) two of the six H,
hodoscope elements immediately downstream of
the magnet were activated.

A typical run consisted of 20000 triggers taken
over an 8 h period. Periodic runs were also tak-
en with an empty target. A DEC PDP-15 comput-
er was used to monitor the performance of the
apparatus and to transfer data to magnetic tape
for off-line analysis. A total of ~400 000 triggers
were collected in the experiment; the data from
about half of these will be presented in this re-
port.

Spatial reconstruction. performed off line, pro-
vided vector-momentum information for the two
charged tracks of the (pn~) “V” entering the mag-



