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ponents deduced from Eqs. (14) and (15) are list-
ed in Table I.

There are other cooperative phenomena which
must be re-examined in light of the possible ex-
istence of the spin-glass state. In particular we
are now considering the competition between fer-
romagnetic or antiferromagnetic ordering and
spin-glass ordering that will occur at some crit-
ical value of [J]„.We are also considering the
possibility of other types of spin-glass ordering
that may occur in other types of random systems,
e.g. , systems with random uniaxial anisotropy. "
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Temperature dependence of the nuclear quadrupole frequency, v, of noncubic metals
has been studied theoretically. It is shown that the electronic contribution to the field
gradient is largely responsible for the observed T behavior. The conclusions are
general and apply to all noncubic metals.

The study of electric field gradients, eq, in
metals is of great importance since it not only
provides a detailed knowledge of the electronic
wave functions in the occupied Fermi volume,
but can also yield valuable information regarding
the nuclear quadrupole moment, Q. Experiments
using a variety of probes, such as nuclear mag-
netic resonance, time-differential perturbed an-
gular correlation, and Mossbauer effect, have
been performed on both pure noncubic metals and
alloys to study the distribution of eq. In several
systems the sign of the nuclear quadrupole cou-
pling, vz —e'qQjh, has also-been determined.

Recently the temperature dependence of v@ of
several metals, such as Cd,'' Zn, ' In,' Sb,' and
Ga,' has been studied experimentally. An analy-
sis of these results reveals the interesting fea-
ture that v@ generally decrea, ses' a,s T' ' for all
these metals, namely,

vz=v+ (1 —nT ),
where v' is the value of the nuclear quadrupole
frequency at T =0 K and a is a constant. Since
the electronic structures of all these metals are
very different from each other, this "universal"
form of the temperature dependence suggests that
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a mechanism common to all metals must be re-
sponsible for the behavior.

In this Letter I present a theoretical calculation
of the temperature dependence of v@ in metals
that successfully explains the experimental ob-
servation. Conventionally' one writes the field
gradient as a sum of two contributions,

eq = eq),„(1-) )+eq, )(1 -&), (2)

The sum in Eq. (4) is over the occupied states k
and the factor 2 is due to spin.

The term in Eq. (3) has recently been calculat-
ed at T =0 K for the hcp metals Be,' Mg,"and
Cd" using a band-structure procedure. The elec-
tronic part combined with the lattice contribution
yielded theoretical results for eq in very good
agreement with experiment. The lattice contribu-
tion to eq in Eq. (2) can be calculated"' " easily
as a function of temperature from a knowledge of
lattice parameters. To compute the temperature
dependence of the electronic part in Eq. (3), we
write +k (r) in terms of orthogonaiized plane
waves,

~-. ( ) =~a(1-P-)Cr( ), (5)

where Nk is the normalization constant, I'k is
the core-projection operator, and@'k (r) is the
pseudo wave function that contains all of the tem-
perature information. We write 4'k (r) in terms
of perturbation theory,

@~(r) @~(0)(r)~@~(l)(r) ~@~(2)(r) ~ (6)

where the superscripts (0), (1), (2), .. . , indicate
various orders of perturbation in the pseudopoten-

where eq~,« is the field gradient due to the non-
cubic arrangement of ions in the lattice and 1-y
is the mell-known Sternheimer antishielding fac-
tor. The term eq, ~ is due to the conduction elec-
trons and 1-R is a correction factor due to the
interaction of the conduction electrons with the
distorted ion cores. This is of the order of unity
and is neglected in most theoretical calculations.
While computation of the lattice term in Eq. (2)
is straightforward, "'" the evaluation of the elec-
tronic part is rather complicated since it requires
a knowledge of the conduction-electron wave func-
tions, +), (r), for all occupied electron states:

eq, &

——e Jd'r p(r)(3cos 6 —1)/r', (3)

where ep(r) is the total conduction-electron charge
density at r,

p(r) = 2 2 I
+ k (r) I' (4)

k&kF

W(G, T) =2 Q (2n„+1)IG e„l2,2, , 2M' (10)

where n„ is the average occupation number of
phonons in the mode qs and the other symbols
have their usual meaning. For a system with one
atom per unit cell, Eq. (10) can be evaluated in
the Debye model" and we have

w(G, T) = (Ã2/2M ',e,)(."(o(T/e, ),
where the Debye integral (()(T/eD) is given by

-' d' (12)

In Eq. (11), k& and eD are, respectively, the
Boltzmann constant and Debye temperature. For
t"'s restricted to the first few Brillouin zones and
temperatures in the range of experimental inter-
est, it can be seen that W(G, T) is much less than
1 and one can approximate

e"&(G ~ &) ] (3@2G2/2M/ Q )(p (T/e )

Substituting this result into Eqs. (9) and (7) and
summing up to all orders of perturbation in Eq.
(6), one can write the temperature-dependent
charge density of Eq. (4) as

p (r) po(r) po(r)q (T/QD)

where p, (r) is the electron charge density at T

(14)

tial, V. The form of the various terms in Eq. (6)
in nondegenerate perturbation theory is standard.
For the discussion to follow, it is useful to write

(r) = Ik) = (fl )
'" e'

c,-„( )( )

=Z c 'I.&&+Glvl»/(Ek -E k+G))l&+G&, (7)

etc. In the above equation, &k is the free-single-
particle energy, and 0 is the reciprocal-lattice
vector. The total pseudopotential of the lattice,
V(r), can be written as a sum of potentials cen-
tered around the ion site with position vector H. „,

V(r) =Q,o(r —R,). (6)

Following Kasowski, "we can write the tempera-
ture-dependent pseudopotential matrix element in
terms of its value at T =0 K, namely,

&k+GIV I» = e '" "&k+GIV, lk). (9)

Vo is the pseudopotential of the lattice at T =O'K

and &k+GIVol» contains the structure factor at
O'K. The function W(G, T) is the usual Debye-
Waller factor and is given by
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=O'K. j,(r) is a function of r, also at T =O'K,
and its form can be seen easily from Eqs. (4),
(6), and (9). The temperature dependence is all
included in y. Substituting Eq. (14) in Eq. (3) we
obtain the electronic contribution to the field gra-
dient at temperature T:

eq„= eq„'[1-Pq (T/OD)], (15)

0
o

a
(D

1

0
in (T I OD )

FIG. 1. The solid curve is the plot of 1nlp(T/8$
—p(0)i versus 1n(T/8$. The dashed and dot-dashed
curves represent the T ~ and T' behaviors, respec-
tively. The range of T/BD which is most significant
experimentally is 0 & T/BD & 2.5.

where eg, q is the value of electric field gradient
at O'K, and P is a temperature-independent con-
stant that depends upon the details of the pseudo-
potential, lattice structure, and Debye-%aller
factor of the solid.

Since the lattice contribution to the field gradi-
ent, eq'~«, is weakly dependent upon tempera-
ture, ' one would like to analyze y(T/8&) to see if
it has the same temperature variation as ihe ex-
perimental eq. From Eq. (12), it can be seen
easily that as T - 0, y(T/8n) —

& (a result of zero-
point oscillations) and for T- ~, y(T/8D) increas-
es linearly with T. For intermediate tempera-
tures, this has to be evaluated numerically.

To determine the temperature dependence of
y(T/8n) at an intermediate T, I have plotted in
Fig. 1 In[y(T/8D) —p(0)] as a function of ln(T/
8D). It is seen that y(T/8D) increases on the av-
erage as (T/8D)'" for temperature up to OD and
does not approach the infinite-temperature limit
even for T/8D-3. This observation clearly es-
tablishes the average T' ' variation of the elec-
tric field gradient at low temperatures. Since
the Debye integral in Eq. (12) is independent of
the details of the electronic structure, and the

nuclear quadrupole moment Q is believed to be
temperature independent, the above conclusion
applies to all metals and explains the "universal"
temperature dependence of vz in terms of the
electronic part of the field gradient.

The calculation of the constant P in Eq. (15) is
rather difficult because of its complicated depen-
dence on the pseudopotential and band structure
of the solid. It is, however, interesting to note
that Py(T/8D) in Eq. (15) also provides one with
a scheme to study the relative slopes, a, of the
electric field gradient in Eq. (1). Neglecting the
influence of the band structure in the determina-
tion of the relative slope and noting that p(T/OD)- (T/8D)'~', one can evaluate the relative c. 's
semiquantitatively. From Eqs. (11)-(13)it is
easy to see that this slope o.'should scale as 1/
OD'"M, where M is the mass of the ion. Since
this result is obtained by neglecting the effect of
pseudopotentials of metals, comparisons of rela-
tive slopes should be made with caution. This
comparison would perhaps be more meaningful
between elements of the same group of the peri-
odic table. Thus the ratio of the slopes n com-
puted for Cd and Zn is 1.-8 which is in good agree-
ment with the experimental ratio 1.6. For a nu-
merical comparison of &c/&c' with experiment,
I have chosen metallic Cd and Zn. The lattice
contribution for hcp metals was computed by us-
ing the expression"

qi,„=2[0.0065 —4.3584(c/a —1.633)]a s, (16)

where c and a are lattice parameters. Taking y
as computed by Das and Pomerantz" and the lat-
tice parameters" at several temperatures, I have
computedeqi, «(1-y ) for Cd and Zn. The quan-
tities eq, i' and p in Eq. (15) were determined
empirically by subtracting the lattice contribu-
tion from experimental values of eq extrapolated
to O'K and at room temperature. Equation (15)
was then used to compute eq, q at other tempera-
tures. Table l compares theoretical and experi-
mental ratios of vc/vc' at several temperatures.
The agreement with experiment is good, partic-
ularly for low temperatures.

The deviation of p(T/8D) from T3~2 behavior in
Fig. 1 and the remaining discrepancy between ex-
periment and theory in Table l at high tempera-
tures could be due to several reasons: (i) y(T/
OD) in Eq. (12) is evaluated in the harmonic ap-
proximation and anharmonic effects are impor-
tant at higher temperatures; (ii) the temperature
dependence of OD and the use of actual phonon
frequencies could also influence the result of
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TABLE I. Temperature dependence of the normalized
nuclear quadrupole frequency, vc/voo, iu Cd aud Zn.

Zn
T "a~ o'

('K) Expt. Theor.
T

('K)

Cd

"o ~o
Expt. The or.

300 0 92
400 0.89
490 0.86
560 0.83
630 0.79

0.92
0.89
0.87
0.85
0.84

219 0.93
245 0.92
3P3 0 90
338 0.89
415 0.86
465 0.81
523

0.93
0.92
0.90
0.89
0.87
0.86
0.85

The constant p in Eq, (15) was obtained by fitting the
theoretical result for p to experiment at 300'K for Zn
and 303'K for Cd.

Egs. (11) and (12); and (iii) the effects of temper-
ature on the Fermi-surface topology could also
be important.

In summary, I draw the conclusion that the tem-
perature dependence of v@ of a metal is primarily
due to the conduction-electron effects and that the
effect of the electron-phonon interactions on the
crystal potential is responsible for the larger
part of the temperature dependence. A more de-
tailed calculation of the eq, ~ term using a band-
structure procedure and experimental phonon fre-
quency would be useful in obtaining better agree-
ment with experiment. Experimental study of the
temperature dependence of v@ in more metals as
well as alloys would be useful to establish further
evidence for the T' ' behavior.
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