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A scaling analysis of the adiabatic eigenstates of an electron placed in a deformable
continuum with and without the presence of a Coulombic defect is set forth. This pro-
cedure enables us to obtain exact information about the system's adiabatic eigenstates
for various models of the electron-lattice interaction.

A long-standing fundamental problem in solid-
state physics is that of determining the circum-
stances in which the carrier-induced atomic dis-
placements do or do not qualitatively affect eigen-
states of an electronic charge carrier in a insu-
lator (produce a substantial polaron effect). Stud-
ies of the effect of the electron-lattice interac-
tion on the electronic states have employed both
a variety of models and a variety of approaches.
In particular, three-dimensional systems as well
as systems of lesser dimensionality have been in-
vestigated. In addition researchers have ad-
dressed rather distinct models of the electron-
lattice interaction; among others the long-range
interaction of an electron with the electric di-
poles associated with longitudinal-optical-mode
displacements' and the short-range interactions
characteristic of both polar and nonpolar materi-
als (analogous to the deformation potential) have
received considerable attention. ' 4

In this work we present an adiabatic treatment
of the ground state of a carrier placed in a de-
formable continuous medium with and without the
presence of a static (defect-related) Coulombic
potential well. The results provide definitive
predictions as to the nature of the adiabatic ground
state —in particular the degree of spatial local-
ization —and its dependence on range and strength
of the electron-lattice interaction, as well as on
the dimensionality of the system. A general sum-
marizing statement: It is found that the degree
of localization of the adiabatic ground state may
vary continuously or discontinuously with chang-
es in physical parameters (such as electron-lat-
tice coupling strength), depending on the charac-
ter of the electron-lattice interaction and on the
dimensionality of the system. Furthermore with
an alteration of the physical parameters, states
other than the ground state can, in some instanc-

es, abruptly appear in (or disappear from) the
solution.

The adiabatic approach is based on a physical
picture in which the motion of an excess electron
is sufficiently rapid compared to the motion of
the (relatively heavy massed) atoms of the sys-
tem so that the electron may be assumed to ad-
just to the instantaneous positions of the atoms.
In this (adiabatic) limit (the kinetic energy of the
lattice atoms is neglected) the ground-state en-
ergy of the coupled electron-atom system is the
minimum of the sum of the electron's ground-
state energy (itself a function of the dilation of
the continuum) and the strain energy of the de-
formable continuum. In particular, the Hamil-
tonian of an electron placed in a deformable con-
tinuum containing a defect is

H, = T, + V» (r) + fd~'Z (r, r')a(r'),
th)

where T, is the electron's kinetic energy opera-
tor, and the remaining two terms are the contri-
butions to the potential energy of an electron at
r associated, respectively, with the presence of
the defect and with the dilation of the deformable
continuum. The final term, the electron-contin-
uum (electron-lattice) interaction, depicts a lin-
ear dependence of the potential energy of an elec-
tron at r on the dilation associated with each
point of the continuum, h(r'); Z (r, r') is a func-
tion which characterizes the strength and range
of the electron-continuum interaction. The rele-
vant electronic energy, E„, for a given strain
field, b(r), is given by

&,) = fdv 4 *(r)H, 4(r),

where 4(r) is the lowest-energy eigenfunction of
H, . Finally the strain energy of the continuum in
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the usual harmonic approximation is simply

E, = ,'S-fd~ ~'(r ),
where S is a strain constant.

The ground-state energy of the coupled system
corresponds to a situation in which the distortion
pattern, characterized by A(r), is such as to
yield the lowest total energy, F.,&+E,. Minimiz-
ing the total energy with respect to h(r), one
readily finds that

To calculate explicitly the ground-state electron-
ic eigenfunctions one must solve the eigenvalue
equation H, O' =E„4with H, being given by Eq. (1)
and A(r ) being given by Eq. (4). This is gener-
ally a formidable task.

For our present purposes it will suffice to em-
ploy an alternative procedure. To begin, we uti-
lize Eq. (4) to express the ground-state energy
in terms of the ground-state electronic eigenfunc-
tions. Explicitly, we write

b, (r) = —8 'fd7' Ie(r')I'Z(r', r). (4)
E =T, —V„—V~, +E, ,

where E, = 2V~, and

(5)

T.= (@'/2m) fd~
I
~+(r)l',

V„= —fdr !%(r) I
'V„(r),

V, = S 'fd&
I
+(r) I' fd ~' Z (r, r') fd 7" Z (r", r')

I
@(r ) I

'.

(6a)

(6b)

(6c)

Since the above energy is (by construction) the minimum energy of the coupled system, ally alteration
of the wave function 4(x) must necessarily increase the total energy, E In par. fieuiar, if we change
the length scale of the (normalized) eigenfunction, replace @(r) by R ~1'@(r/R) (d is the dimensionality
of the system), the energy (now a, function of R) of a finite-radius eigenstate must, have its minimum
at the scale corresponding to the actual eigenstate, at p = 1.

To proceed further we must introduce explicit forms for the electron-continuum interaction function
Z(r, r ). In the case of the standard long-range interaction of the carrier with the deformation-induced
electric polarization of the continuum one has Z(r, r ) =E~l r —r I . The continuum version of the
short-range interaction of the molecular-crystal and deformation-potential models is the local inter-
action Z(r, r ) =E~6(r —r ). Generalizing, we write the interaction function as the sum of these two

contributions. In addition we henceforth take the defect potential to be Coulombie: V„(r)~
~ r!

Introducing the above described functions into Eqs. (5) and (6), we explicitly calculate E(R). The re-
sult is

E(R)=T, /R' ——,(V /R" +V ' /R'+U;„, /R' )-V, /R,

where T, and U„a,re given by Eqs. (6a) and (6b), and

V, ~ = (E~'/S) fd v
I 4 (r) I

',

V,"=(2E,E,/S) fdT fd~- le(r)l'le(r")I'/lr —r"I',

U, '=(E,'/S) f«f «' f«" I+(r)I'I+(r")I'/lr- r'I'lr'- r"I',

(8a)

(8b)

(8c)

with V~, =V~, +V~, ' +V~,
At this point we can, with relatively little ef-

fort, obtain several well-known results of polar-
on theory. Consider first the standard optical
polaron problem characterized by the study of a
three-dimensional defect-free continuum in which
the carrier interacts with the continuum solely
via the previously described long-rang e compo-
nent of the electron-continuum interaction: d = 3,
V„=O, and V~, = V~, ' =0. As illustrated by the
curve of Fig. 1(a), for this case E(R) [=T,R
——,'V~, R '] possesses a solitary minimum at R
=4T, /V~, ~= 1. This means that the electron ex-
ists in a finite-radius, bound state (E,&

=T, —V,

! = —3V~, /4&0) with the polaron (bound electron
plus distortion) always being energetically stable
(E =E,&+E, = —4V~, &0). Furthermore, the ra-
tio of the electron's energy (-3U~, /4) to the
strain energy of the continuum (—,'V. , ) is simply
—3:2. These results were previously obtained
by Pekar. '

An adiabatic theory of a carrier in a one-di-
mensional system interacting with the defect-
free continuum solely via the skoxt-range com-
ponent of the electron-continuum interaction was
developed in Bef. 2. Despite the difference be-
tween the two models, the above results, with
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FIG. l. Representative E(A) curves.

V~,
~ simply replacing V~, , were again obtained.

The reason for this agreement is now clear:
%ithd= 1 and V~=V~, =V~, =0 one sees from
Eq. (7) that E(R) =T,R ' ——,Vh, R"' only differs
from the energy function E(R) characteristic of
the Pekar problem by the substitution of V~, ~ for
VIII

The situation of a carrier in a three-dimension-
al defect-free deformable continuum for which
the electron-continuum interaction is short ranged
may be seen to be qualitatively distinct from the
one-dimensional version of the problem. Specif-
ically, with d =3 and V„=V, =V. , ' =0, Eg. (7)
reduces to E(R) =T,R '-2V~, R '; as illustrat-
ed in Fig. 1(b) this function possesses no finite-
radius minimum. The only minima which occur
are at R = ~, corresponding to an unbound elec-
tron in an unstrained continuum, and at R = 0,
corresponding to an electron self-trapped in an
infinitely deep and infinitesimally localized de-
formation-induced potential well. These two sit-
uations are, respectively, the continuum analo-
gies of rigid-lattice conduction-band states and
small-polaron states (the carrier and its induced
lattice deformation being essentially confined to
a single unit cell) associated with a carrier in a
discrete lattice. The notion that only these two
situations, but no intermediate-range polaron,
could exist in a three-dimensional system char-
acterized by a. short-range electron-lattice inter-
action has been advanced previously on the basis
of an approximate adiabatic argument4 and varia-
tional calculations. "4 Our exact adiabatic results
are consistent with such an hypothesis.

In proceeding to investigate more complicated
systems, we shall henceforth restrict our atten-
tion to three-dimensional models. The first situ-

ation to be considered is that of an electron in
the presence of a Coulombic defect for which the
electron-continuum interaction possesses only
the previously discussed long-range component.
In this case one finds, from Eq. (7) with V~,
=V~, ' =0, that, as in Fig. 1(a), E(R) =T,R '
—(Vd +2V. , )R ' possesses a solitary minimum
at R = 2T, /(V„+ 2V~, ~) = 1. This circumstance
corresponds to the electron being stably bound
in the potential well provided by the defect and
the carrier-induced dilation of the continuum
with the ground-state energy E = ——,'(V, +-,'V;„~).

The situation of a carrier in the presence of a
Coulombic defect which interacts with the contin-
uum only via the short-range component of the
electron-continuum interaction is, however, qual-
itatively different. In this case, V,~ = V,~'~ = 0,
one has that the energy function, E (R) = T,R '
—V„R"'—&V~, R"', always possesses a minimum
at R = 0 and will [Fig. 1(c)] or will not [Fig. 1(d)]
possess an additional finite-radius minimum de-
pending, respectively, on whether T,' is greater
than or less than 3Vh, ~V~/2. Thus with a contin-
uous change of the physical parameters the fin-
ite-radius solution will cease to exist (become
dynamically unstable with respect to forming the
continuum analog of a small polaron) if 3V~, ~V„/
2 is thereby increased to surpass T,'. The in-
clusion of the long-range component of the 'lec-
tron-continuum interaction along with the short-
range component does not qualitatively alter this
conclusion. In fact, this more general situation
is formally the same as that in which only the
short-range component is considered: T, ——,

'
&& V~, ' replaces T, and V„+—',V~, replaces V„.
Finally it is noted that the problem of a carrier
in a defect-free three-dimensional continuum
which interacts with the continuum via both the
long-range and the short-range components of
the electron-continuum interaction is also formal-
ly the same as that of a carrier in the Coulombic
well interacting with the continuum dilation sole-
ly via the short-range interaction. In this case,
T, must be replaced by T, —2V. , ~ and V„re-
placed by —,'V, Thus a purely short-range elec-
tron-continuum interaction always yields two dis-
tinct states, a small-polaron-like state and a
nonpolaronic (unbound dilationless) state, Fig.
1(b). The addition of a long-range component to
the electron-continuum interaction can convert
the nonpolaronic state to a finite-radius polaron-
ic state, Fig. 1(c). As depicted in Fig. 1(d), with
a sufficiently strong long-range component of the
interaction, the finite-radius state shrinks in
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size until it can no longer exist without collaps-
ing into a small-polaron state.

Finally it is noted that in a discrete (atomic)
system both the electron-lattice interaction ener-
gy and the strain energy saturate at some maxi-
mum value when the electron's radius shrinks
smaller than the interatomic separation. One
method of incorporating this effect into the con-
tinuum model is to disregard the E(R) curve at
values of the scaling factor R less than that char-
acteristic of the onset of the saturation effect,
R, . This procedure simply serves to eliminate
the small-polaron solution if R, lies between a
maximum and a minimum (at R = 1) of E(R). If
R, & 1 the solitary solution corresponds to small-
polaron formation. In systems with a short-
range component of the electron-lattice interac-
tion a change in the physical parameters can pro-
duce the abrupt appearance (or disappearance)
of small-polaron states (at R, ) in the non-ground-
state solution. The energies of such small-polar-

on states are not, however, generally given cor-
rectly by this modified continuum model. One
does see, in agreement with Befs. 3 and 4 and
Shore, Sander, and Kleinman, ' that although the
nature of the ground state may change abruptly
with an alteration of the physical parameters, in
the adiabatic limit the ground-state energy does
not.
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We report measurements of the L ~~ ~~~ x-ray threshold in Mg at momentum transfers
of q =0 and 1.8 A . We found that a straightforward application of the theory of Mahan,
Nozieres, and De Dominicis failed to describe the data. We conclude that for Mg, and
probably for all polyvalent metals, other effects are at least as important as this theory
for describing absorption threshold shapes.

The shapes of soft-x-ray thresholds in simple
metals depart from the simple step function ex-
pected in the one-electron approximation. ' Some
metals show a peaking at threshold; others do
not. Mahan, Nozieres, and De Dominicis (MND)
formulated a theory to explain these observa-
tions. ' This many-electron theory describes the
effect on threshold shapes of interactions between
the core hole and conduction electrons. Peaking
is predicted when transitions occur to s partial
waves in the conduction band; when transitions
to higher partial waves occur, a more rounded
threshold shape is predicted, because the screen-
ing charge of the core hole is expected to be dom-
inated by s waves. Consequently, when the core
is aP state, peaking is predicted, while s core
states should have rounded thresholds. These

predictions are in qualitative agreement with
soft-x-ray absorption spectra. ' Inelastic elec-
tron scattering can provide a more stringent test
of the theory since different conduction-band par-
tial waves can be selected for a given core state
by varying the momentum transfer. ' This type
of test was first proposed by Doniach, Platzman,
and Yue. 4

The operator causing the transition in electron
scattering is e'~' where q is the momentum
transfer and r the position operator of an elec-
tron in the sample. Since the core state is well
localized the transition matrix element can be
expanded as

where (f and g, are the exact final and initial
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