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We investigate the stability of long-wavelength, plane-polarized electromagnetic waves
when the oscillatory energy of the electrons exceeds their rest energy. The strong elec-
tron-mass variation destabilizes electron modes polarized along the electric field of the
pump Eo. The electron and ion modes decouple in the presence of such an intense pump
and hence the ions do not strongly influence the instability.

The relativistic-mass oscillation in the presence of a large-amplitude, long-wavelength electromag-
netic wave can strongly enhance the anomalous absorption of the wave in plasma. Tsintsadze' has
shown that this mass variation can parametrically excite plasma waves. More recently, Drake et ul. '
have shown that, because of the electron-mass changes, electrostatic perturbations of long-wavelength
electromagnetic waves "slow down" in regions of high intensity, steepen, and then break.

ln this paper we investigate the stability of long-wavelength, plane-polarized electromagnetic waves
when the oscillatory energy of the electrons exceeds their rest energy. The electron velocity oscil-
lates periodically between +c. We show (1) that the wave is unstable to pure electron perturbations
polarized along E„and (2) that the decay into coupled electron and ion modes, which occurs in the
nonrelativistic limit, does nof; take place. This result is in sharp contrast with the calculations of
Max and Perkins' for a circularly polarized pump where the ions play an important role.

The novelty of the present calculation is associated with the treatment of the highly anharmonic mass
variation of the electrons as their velocity oscillates between +c. Rather than expand the time depen-
dence of the mass in an infinite Fourier series, we assume that the electrons are so massive that they
only respond to the perturbed fields as their velocity passes through zero in crossing between +c. This
approximation is valid to lowest order in an expansion in the small parameter (1+P ') '", P being
the amplitude of the electron momentum (normalized to m, c) in response to Eo.

The electron motion follows from the relativistic kinetic equation in one dimension,

l9/at+ [P /(1+P')'"j 6/3x [Z(x, t)+E-,(t)] 9/9P}lf (x,P, t) = 0,

where we have normalized the electric field, momentum, distance, and time to m, &u~c/~e~, m, c, c/m~,
and ~~ ', respectively, so~ and m, being the electron plasma frequency and rest mass. With neglect
of the perturbed field E, f is a function of q =p -p, (t), where p, (t) = J, d7'E, (v') is the oscillatory mo-
mentum of the electron in Zo. The self-consistent time dependence of p, (t) was investigated by Akhie-
zer and Polovin (see also Ref. 2 for a simpler discussion), who found that p, (t) is periodic over the
time interval 7, =2'/&o, =4(2P )'" when P»1. We will investigate the stability of small perturbations
around Po(t). It is convenient to change variables from P to q in (1). We then linearize the resultant
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equation and solve for the kth Fourier component of the perturbed distribution f (x, q, t) =f (x,p, t) —f,(q):

f» = f dr E»(7) exp[ikX(t, 7, q)] Bf,/Bq, (2)

where

X(t, r, q) =f dr, (q+p, )/[1+ (q+p, )']'"
is the trajectory of a particle in E,. When the thermal velocities of the electrons are nonrelativistic,
q «1 and (2) takes the form

f = f dr E„(r)exp[ikX, (t, r) —ikqh(t, r)] Bf,/8 q,

where Xo(t, v') =X(t, r, 0) and

h(t, v) = f, dv, (1+p,') '" . (5)

In the nonrelativistic limit h(t, 7) = t —v and qh(t, v) represents the free streaming of the electrons. In
the present calculation, as the electron velocity approaches c, the spread of electron velocities in the
lab frame approaches zero, since the instantaneous effective thermal velocity of a particle is q/(1
+p,')'". From the point of view of E, the electrons are periodically cooled. To lowest order inP
we can treat the thermal velocity of an electron as zero at all times except the short intervals during
which p, (t) = 0. As a function of v, h(t, r) is therefore a "stair step" function which is a constant un-
less p, (r) = 0 when h(t, r) abruptly changes by

a= f '
dv, [I+p,'(v, )] '"=(2/P )'".

(4)

(6)

h(t, 7') is a constant over each half-period 70/2 so that it can be factored out of the v integral over this
interval as follows:

We conveniently divide time into half-periods v', /2 of the pump such that h is a constant over each half-
period. If t is in the nth half-period and 7' in the mth, h(t, 7') ~(n-m)b.

We now insert f» in (4) into the first-order Poisson equation and carry out the q integration for a
Maxwellian velocity distribution. After including the cold-ion response in the equation, we find the fol-
lowing integral equation for E»(t):

E»(t) = —f dv h(t, r)E»(r) exp[- k'a'h'(t, r)/4 +ikX, (t, v')] —5' f dr (t —v)E»(v), (7)

where 5= (m, /m;)'". Equation (7) is valid for arbitrary pump strength ~Eo~ and it therefore correctly
describes the usual decay of E,(t) into plasma waves and ion fluctuations" as well as electrostatic in-
stabilities arising from weak electron-mass oscillations. Since these instabilities have been thor-
oughly analyzed by other authors, we will confine our discussion to the strongly relativistic pump.

To simplify the analysis, we ignore the ion response and investigate the stability of electron modes.
This approximation will be justified a posteriori when the ion motion is included. With transformation
of E»(t) to the oscillation frame of the electrons by defining A„(t) =8» exp[- ikXO(t, 0)], (7) simplifies to

A, (t) = —f d7 h(t, v)A»(v) exp[- k'a2h2(t, ~)/4]. (8)

n

A»(t) = — P (n -m)& exp(- [kab (n -m)/2]']. ft, &
„drA»(v);S-~ (9)

t again lies in the nth half-period of the pump. A»(t) =A» is a constant as long as t remains within the
nth interval so that the integral in (9) can be carried out. Equation (9) then reduces to

A»"= —4 Q mA. „" exp[-2(k&D'm)'].
m=0

(10)

Because of the effective cooling of the electrons, their Debye shielding length reduces to XD'=a(4P ) '".
We define the complex phase shift of A»(t) during v, as &u7', so that A.,"~exp(in&us, /2). The dispersion
relation e, (&o, k) then follows from (10),

e, (&u, k) = 1+4 g m exp(iaovom/2 —2k'A. DPm') =—1+X,(&or» kA. D') = 0.
fit= Q
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FIG. 1. The growth rate y& of the electron instability
as a function of k. The maximum growth rate is 0.21~0
at kA.DO 0.44.

The discrete summation in y, is analogous to the
full Z function of linear theory so that e,(e,x) in-
cludes electron damping. We analytically solve
(ll) for ro in two limits as follows:

1+i2k~,'/~ e (k~,')2 «1,~

~1+i(ln4 —2k'~,")/~ V (k~;)' ~1.

We show in Fig. 1 the results of the numerical
solution of (11) for y» =Imto. In the absence of
thermal corrections, the perturbation is stable
as discussed in Ref. 2. Note also that because
of the effective electron cooling at velocities
near c, sliort-wavelength modes which would be
heavily damped in the absence of Ep are actually
unstable. co does not, of course, represent the
standard frequency of a linear wave. The actual
time dependence of A»(t) is shown in Fig. 2. The
phase is periodic over the time interval 'Tp as ln
the calculation of Tsintsadze for the weakly rela-
tivistic pump. The electrons are so massive

FIG. 2. The time dependence of A&(t), the electric
field of the unstable mode in the electron oscillating
frame, for &J,=0.2&0, The phase of A& is periodic over
ro

——2m'/uo, the period of the pump, and contains all har-
monics of the pump fundamental frequency (dp.

while they are moving at roughly + c that they do
not respond to A™~ and hence A„does not evolve
during these intervals. As the electrons pass
through zero velocity, their mass reduces to m,
and they rapidly respond to A~, changing its
phase by m.

The same essential approximations which we
have just made in solving for e, (co, k) enable us
to include the ion response. We again assume
that k(t, 7) in the first term on the right-hand
side of (7) is a constant over each interval ~,/2.
This term is then a functional of E~ only through

B„"=J;,d~s(~»)exp[-ikX, (~, 0)].

Solving (7) for E» (t) as a functional of B»", mul-
tiplying the result by exp[-ikX, (t, 0)], and inte-
grating over a half-period, we obtain the follow-
ing equation for B," alone:

oo T
B»"= —4 g mB»" exp(-2k'AD~m')+48 J o dv J„dv, sin[6(7- r, )]

75= 0 0

&& exP[-ikX, (7, r, )] g mB»» exP(-2k'Xo m') 0(Pr, /2 —v, ) 8(v, —(P —1)ro/2) .

The ion response enters through the second term on the right-hand side of (13). We can carry out the
time integrals in (13) if we approximate the electron velocity by +c and assume 5r, &1. The disper-
sion relation then follows once we assume B„"~exp(-inter, /2):

e(m, k) = 1+X,(toro, kA D ){1+[sin(~kro)/akro] (2 &so) /[4 sin (&mro) —(z~5v'o) ]] . (14)
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Since 6v'0«1, the ion response is negligible unless ~- 6 «1, justifying our previous neglect of the ion
motion for the electron instability. An important result of this paper is that the ion and electron modes
decouple when P»1. For low-frequency waves X,(nl7„kko') =)(,(0, k)tD'), which can be approximated
as

(kA, ') ' when (k& ')' «1
%(0, k)tD ) =

4 exp(-2k'A. D~) when (kXD')' a1.
We now solve for (o explicitly as follows:

u = + 6(1 —[sin(~krc)/~kl c] /[1+)(, '(0, k)inc)]P '.
The electron response appears in the second
term on the right-hand side of (16) and is always
less than unity so that the low-frequency mode is
stable. To understand our expression for cv in
(16), we consider an ion density perturbation
with a wave vector k. The electrons oscillate in
response to Eo with a high-frequency displace-
ment 4x-r, /4 and thereby experience a periodic
phase shift kr, /4 of the low-frequency wave. The
average low-frequency field seen by the elec-
trons (averaged over the high-frequency displace-
ment) is reduced by [sin(&kl'c)/&kv, ]' relative to
the field at a fixed spatial point. This reduction
factor appears in (16). When kv, /4Zs, the elec-
tron response can be neglected and the ions oscil-
late at their natural frequency 6. For long-wave-
length modes co approximately equals + 6k%, D', the
usual ion acoustic frequency reduced by the effec-
tive cooling of the electrons.

Because of the decoupling of the electron and
ion modes in the strongly relativistic limit, the
nonlinear development of the parametric instabil-
ities in this regime will be strikingly different
from the corresponding development of the elec-
tron-ion modes of the nonrelativistic pump. The
ion modes will probably not play an important
role in the nonlinear evolution of instabilities of
the strong pump, so that plasmon trapping by lo-
calized density cavities, which occurs in the non-
linear state of the instabilities of the nonrelativ-
istic pump, will not take place.

The instabilities investigated in this paper may
have a strong influence on a recent theory' of
cosmic- ray acceleration by pulsar fields. Ken-
nel, Schmidt, and Wilcox propose that the wave
energy of super-relativistic plasma waves prop-
agating outward from pulsars is converted into

(16)

directed particle motion thus producing large
numbers of high-velocity particles. In the ref-
erence frame of the high-velocity particles, their
relativistic plasma wave reduces to our homoge-
neous pump. ' Hence, the instabilities discussed
in this paper may break up the relativistic plas-
ma wave before energy transfer to directed par-
ticle motion can occur.
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