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tioned above, preliminary indications are that it
is considerably higher than the value observed at
the lower bombarding energy (365 MeV).

The "Cu bombarding energy of 443 MeV is
about 1.4 times the interaction barrier for '"Au.
This reaction can be compared with Th+ Ar at
288 MeV and with Bi+Kr at 605 MeV also at

1.4 times the interaction barrier. 4 Since the
relative energy above the interaction barrier is
similar in the three cases, our "Cu case is ex-
pected to be intermediate between the quasifis-
sion of Kr+ Bi and the deep inelastic transfer
from Ar+ Th. The angular distribution in the Kr
+Bi case is sharply peaked near the grazing an-
gle, while it is more forward peaked in the Ar
+ Th case. ' Thus our Cu+ Au angular distribution
with a broad maximum and a substantial contri-
bution at 0 is ineed intermediate between the dis-
tributions obtained with Ar and Kr ions. These
considerations indicate that quasifission and deep
inelastic transfer processes are the same type
of reaction, and that the observed angular distri-

butions of products are determined by the mag-
nitude of the 'repulsive Coulomb potential com-
pared to the attractive nuclear potential.
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A surface approximation to the multistep amplitude for direct reactions is presented.
Within this approximation, the distorted-wave Born-approximation series is summed in
closed form, and the result is tested by comparing with exact coupled-reaction-channels
calculations for ' O(P, &,P) '0 and 6O(~, P, d) 60. The approximation gives a good repre-
sentation of the exact results, especially for the '80(a, P, d) ~O process which is dominated
by strong absorption of the deuteron.

Multistep corrections to the distorted-wave
Born approximation (DWBA) are currently of
great interest, ' ' especially in the light of recent
observations" of direct reactions that cannot be
adequately described by the DWBA. The present
communication describes a new approximation"
for the multistep transition amplitude which em-
phasizes the nuclear surface. For this reason
our method may not be mell adapted for the de-
scription of the dynamics of the interior, which
is probably better represented by shell-model
states than by asymptotic channels. However,
for the rather large class of reactions involving
strong absorption, the method appears promis-
ing. Conveniently, it requires only ordinary
DWBA matrix elements which are easily pro-

vided by standard codes. Our method does not
address questions of mathematical rigor. Rather,
lt alnls to simplify realistic calculations of multl-
step contributions to direct reactions in which
absorption is an important feature. Although the
distorted-wave series has been criticized, '"~ 8'~
we use it to illustrate our method, which is also
applicable to iterative versions of the coupled-
reaction-channels' and coupled-integral-equa-
tions' approaches, as well as to the methods dis-
cussed in Refs. 3-5. We hope that our method
will facilitate exploratory surveys of possible
multistep processes and stimulate identification
of dominant indirect mechanisms for any given
reaction.

For the reaction A(a, b)B, the exact multistep
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where

(2)

G, being the Green's function corresponding to
the channel (partial wave) c of arrangement y.
In principle, the sum in Eq. (3) is over any com-
plete set of channels c belonging to a single ar-
rangement y. The selection of arrangement y
is arbitrary, as long as c is a complete set. In
practice, it is necessary to restrict the channels
c to a finite number ¹ the choice of y and c then
depends on physical insight. By making this
truncation we can also avoid the mathemati. cal
difficulties" associated with three-body inter-
mediate states, provided that we include only
channels c in which both fragments are bound.

Combining Eqs. (1)-(3) gives the distorted-
wave series

T.."=Z(F, I~,.G~..IF.&

+Q(F, I sc„G~„G,&, .IF.&+. . . . (4)
CC

Here F,(rY) is the radial distorted wave for chan-
nel c, and Kbc is the form factor that connects
channels b and c.

We can express K„E, in terms of a new, local
effective potential U, , for each channel c, as

fK„(rY,rJF, (r~)dr„

(F, iZ,.iF.&-
U, (rY)F, (rY). (5)

C C C
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correction to the partial-wave DWBA transition
amplitude is given (in standa, rd notation ) by

T."=&,' ' ll G'"v. l x.'"&. (1

Here, and throughout, Greek indices (Y, p, and y
refer to different mass partitions. The residual
interactions in initial and final partitions are
denoted by V and V~, respectively, while X,

(+'

and X, represent the initial- and final-channel
distorted waves, including the internal states of'
the clusters and their relative orbital angular
momenta I,M. For inelastic processes the total
amplitude is obtained by adding T„ to the DWBA
amplitude, while for elastic transitions (a =b)
T„"is added to the amplitude generated by the
optical potential that governs y, ' . The complete
Green's function, G ', can be formally expressed
in terms of the distorted-wave Green's function,
6&', for the arrangement y:

Here T is a DWBA amplitude calculated with a
perturbed wave function on the right-hand side,
e.g. ,

T(„=&F(,I&„IF,&. (12)

The series (10) can be summed to yield a result
in closed form:

Tb.
"=z.z.D b. l. (I -D) 'I ..T". (13)

where D is an N&lV matrix in channel space.
Equation (13) is our main result. Very conven-
iently, it involves only quantities which can be
routinely calculated with a DWBA code. Accord-
ing to Eq. (13), the important indirect routes are

This equation, which formally defines the auxil-
iary potential U, , specifies only its shape, but
leaves its normalization at our disposal. Al-
though U, is in general complicated, we expect
these complications to simplify if the form fac-
tor is surface localized. The surface approxima-
tion (SA) exploits this feature, replacing U, by
U, , a smooth, surface-peaked potential. Since
the magnitude of the auxiliary potential is arbi-
trary, we choose it small, so that U, can be
treated as a "perturbation. "

I et E, denote the perturbed scattering function
obtained when U, is added to the potential gener-
ating E, . Then, correct through first order in
U, , we have

Ec =E. +G. UC+c (6)

Equations (5) and (6) allow one to calculate
G,K„E, by solving the radial equations for E,
and E, , i.e., with and without the "perturbation"
U, . The amplitudes in Eq. (5) can be calculated
by means of a DWBA program, because the DWBA
amplitude for a-c is

T..=(I .I~..IF.&,

and the perturbation of the optical elastic-scat-
tering amplitude due to U, is

t, —t, =(F, I U, iF, ). (8

Combining Eqs. (5)-(8) yields

C~,.F.= (F,-F,)r,./(t. —t,),
and substituting this (and analogous results) into
Eq. (4) finally gives

(a +(c-Tca+Z D(,Pcc~T. .+ ~

CC

where the quantities D are defined by
At

Tbc ~bc and D, ~cc' ~cc'
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Similarly, for "0(d,d) "0,

T„=Tq D p/(1 D~~), - (16)

not necessarily those involving intermediate
states with large cross sections. Instead, the
ratios D are influential. They are large for those
steps where the DWBA amplitude is sensitive to
changes in the optical potential.

We have applied our method to "0(P,P)"0 and
"0(d,d)"0 elastic scattering in a model that in-
cludes a single internal state of "0, ". Q, and d.
The model assumes that all bound states are s
wave, and neglects nucleon spin and isospin ef-
fects. The nucleon-induced process, which does
not involve strong absorption, should provide a
stringent test of the SA method, since this re-
action may involve multistep contributions from
the interior of the nucleus. For these simple
cases only one intermediate state, c =c', con-
nects the given initial and final channels a and b.
For "0(P,P)"0 Eq. (13) now simplifies so that
for each partial wave L we have

T~~" = T,~D ~„/(1 -D„),
with

where D„~ and D» are defined by Eq. (15) with d
and P interchanged throughout. In our calcula-
tions' folded optical potentials are used and con-
sequently D„„and D» vanish. Thus, for this ap-
plication folded potentials eliminate third and
higher-order contributions' and Eqs. (14) and (16)
reduce to

N N
~PP D pd~dP~ Tdd DdP ~Pd ~ (17)

We have calculated T» and T«" exactly, by
applying' a coupled-reaction-channels code to the
coupling of P and d channels. The respective in-
cident laboratory energies are E~ =10.98 MeV
and E, =10.49 MeV. The Q value for the (P,d)
transition to the intermediate state is —1.045
MeV. The nucleon-target interaction utilized in
the folded-optical-potential calculation was taken
from Wilmore and Hodgson. " Further details of
this calculation can be found in Ref. 1.

Tables I and II show the magnitudes and phases
of the exact multistep amplitudes for (P,P) and

(d, d), compared with several approximations.
The uncorrected optical-model amplitudes (de-
noted "optical" in Tables I and II) are also shown,
to indicate the relative importance of different
partial waves, and to show the phase relations
between optical and multistep amplitudes. It is
important to stress the insensitivity of our re-

TABLE I. Partial-wave transition amplitudes, (2L

+1)&'~, for "o{p,p) "o.
TABLE II. Partial-wave transition amplitudes, (2L

+l)Ti, for ' Q(d, d) Q.

a) MAGNITUDES

OPTICAL
EXACT

MULTISTEP
DERIVATIVE VOLUME ON-SHELL

a) MAGNITUDES

OPTICAL
EXACT

MULTISTEP
DERIVATIVE VOLUME ON-SHELL

.687

.961

1.650

2.229

.516

.106

.024

.006

.001

.000

.065

.214

.250

.302

.289

.117

.038

.011

.003

.001

.047

.102

.218

~ 061

.239

.107

.038

.010

.003

.001

.065

.080

.151

.186

.210

.107

.037

.011

.003

.001

.068

.070

.430

.060

.500

.103

.032

.010

.003

.001

.574

1.681

2.282

3.103

3.905

2.594

1.224

.379

.123

.041

.041

.095

.183

.032

.241

.251

.153

.053

.020

.008

.030

.058

.152

.083

.248

.242

.137

.051

.020

.008

.021

.060

.050

.063

.270

.322

.211

.142

.085

.003

.020

.034

.093

.031

.076

.065

.030

.009

.003

.001

-9770

b) PHASES (degrees)
OPTICAL

EXACT

-99-152

MULTISTEP
DERIVATIVE VOLUME ON-SHELL

-149 93

EXACT

-151

b) PHASES (degrees)
OPTICAL

-155-152

MULTISTEP
DERIVATIVE VOLUME ON-SHELL

118
73

144

19

165

106
-123
161
137

123

122

123

124

90

48

35

105

81

84

105

110

151
136

113
92

73

67

65

64

77

73

83

173

147

114

96

92

91

81

86

102

61

28

15

12

118
41

117

75

34

15

10

110
34

103

68

31

15

10

68

53

107

76

28

15

— 25

193

73

160

158

127

104

93

91
90
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FIG. 1. Ratio of elastic differential cross section to
Rutherford for O(P, P)

' O. Comparison of exact coup-
led-channels calculation (solid curve) with the on-
shell (dotted curve) and derivative surface approxi-
rnation (dashed curve) .

FIG. 2. Ratio of elastic differential cross section to
Rutherford for 60(d,d) O. Comparison of exact coup-
led-channels calculations (solid curve) with the on-
shell (dotted curve) and derivative surface approxima-
tions (dashed curve).

suits to U, . Two different choices of U, were
used: the derivative of a real Woods-Saxon shape
with diffuseness a = 1.0 fm (denoted "derivative"),
and a complex Woods-Saxon shape with a =0.8
fm (denoted "volume" ). The radius parameter
was assigned a value of R =3.3 fm. Unlike a pre-
viously described' surface-delta approximation,
our method permits a realistic width for U, . Use
of values in the ranges 0.6 +a ~ 1.2 and 2.7 & R
~ 3.9 revealed little sensitivity to either a or R.
The strength of the interactions also was varied
from 0.25 to 10 MeV with negligible effect. Even
the extreme difference between the real deriva-
tive and complex volume interactions only mild-
ly affects the multistep amplitudes, again indi-
cating an insensitivity to the choice of U, . These
results should be compared with the column label-
ed "on-shell, "which represents the usual on-
shell approximation. " This approximation also
leads to the closed-form expression, Eq. (13),
but with

D~, =iT~,/S, and D„i =iT„i/8, .
In general, the multistep amplitudes are large

for the important (surface) partial waves and the
overall multistep contribution produces a, sizable
effect in the angular distributions (presented in
Ref. 1). For (P,P), the derivative and volume
prescriptions both reproduce the exact TI. bet-
ter than the on-shell prescription. However, the
considerable differences between derivative and
volume results for (P,P) indicate that, in reac-

tions with weak absorption in initial and final
channels, the SA method is only good for esti-
mates of magnitude, and for these reactions the
volume choice may provide the better estimate.

For (d, d) the SA method is encouragingly suc-
cessful, probably because strong absorption en-
sures that the surface dominates the reaction.
The exact results are well reproduced both in
magnitude and in phase, and the surface choice
of U, is clearly superior. The on-shell approxi-
mation fails to predict either the magnitude or
the phase. "

In Figs. 1 and 2 we present the exact and ap-
proximate angular distributions for the respec-
tive processes "O(P,d, P)"0 and "O(d,P, d) "O.
These cross sections do not provide as sensitive
a test as the partial-wave amplitudes do. How-
ever, they clearly reflect the superiority of the
SA to the on-shell approximation.

We conclude that the SA method is a promising
technique for exploratory calculations of multi-
step amplitudes, especially when there is strong
absorption. Fortunately, strong absorption is
typical of all reactions with composite projec-
tiles, and is actually dominant in heavy-ion proc-
esses."

The authors are especially grateful to N. Au-
stern and B. M. Drisko.
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A procedure is described for extracting the pole position of a resonant amplitude from
a knowledge of the phase shift versus energy. Pole positions are determined for the four
p-wave resonances in the nucleon-+ system with high precision. The use of the pole posi-
tion to define the mass of unstable nuclear states is discussed.

TABLE I. Resonance parameters from Bef. 1.

Level
&c.m.
(MeV)

I'c.m.
(Me V)

A recent nuclear-energy-level compilation' in-
dicates rather large uncertainties in the quoted
masses and widths of the P,I, and P,~, resonances
in 'He and 'Li (see Table I). It is customary to
define the masses of these states in terms of the
observed central energy of an experimental reso-
nance peak and in the p, I, cases it is not surpris-
ing that lar ge uncertainties ar e pr esent, since
the corresponding N-n phase shifts do not pass
through m/2 and no sharp group appears in the
experimental spectra. It could be argued that
although the position of a prominent peak may be
useful for characterizing a resonance experi-
mentally, this position does not necessarily have
a compelling theoretical significance as the def-
inition of the mass of the level.

From the viewpoint of the analytic properties

of the scattering amplitude, a resonance is char-
acterized by its pole position and residue, and
the pole position could serve as a suitable defi-
nition of the mass of an unstable level. In this
paper we will study the utility of this alternative
definition by extracting the pole positions of the
N- n resonances from publi. shed energy-depen-
dent phase-shift analyses. Since the pole occurs
at an energy obviously not accessible to experi-
mentation, our procedure involves a continuation
of measured quantities to complex energies, but
as we will see in the cases studied, the pole po-
sitions can be determined with much greater pre-
cision than that quoted in Table I. Similar re-
sults have been obtained in the m-N system'
where the pole position of the 3-3 resonance has
been accurately determined by a variety of meth-
ods ~

We first treat n-n scattering, adapting a meth-
od developed by Ball and Goble' to the charge-
less case. We write the P-wave amplitude for
either J= 2 or & in the usual way,

pgQ, P&g&

p .p3]2
p &pi/2

0.89 +0.05
4.9 + 1.5
1.97 + 0.05

7-12

0.30 + 0.01
2.0 + 0.8

= 0.8
2.5 + 1.0

f(h) = exp(i 5 ) s in5/h =h'/(h' cot5 —ik'),

where k is the center-of-mass wave number and
5 is the phase shift. Since k'cot5 is analytic' at
k =0, the usual effective-range expansion can be
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