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suppresses saturation of the amplification when

(U, —V,)(U, —V,) &0. Moreover, if V,V, &0, it
has the same effect as a finite extent of the inter-
action region in the coherent case and absolute
instabilities are restored.
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The role of the relativistic electron-mass variation in the evolution of large-amplitude
electromagnetic waves near cutoff and in the generation of plasma waves by linear mode
conversion is investigated. Shock formation and subsequent wave breaking along the elec-
tric field of the wave will enhance the absorption of the wave by the plasma.

The anomalous absorption of a large-amplitude
electromagnetic wave near its cutoff has been the
subject of intense research by physicists over
the last decade. Most of this research has cen-
tered on the generation of coupled electron plas-
ma and ion modes and their subsequent absorp-
tion by the plasma. ' More recently, the role of
the electron-mass variation in the absorption of
large-amplitude waves has been recognized.
Tsintsadze' has shown that the electron-mass os-
clllatlon ln a large-amplitude w'ave ean paran1et-
rically amplify plasma waves and that the growth
rates of the resulting instabilities exceed those
of the decay instability.

In the present paper we investigate the nonlin-
ear evolution of large-amplitude waves near cut-
off including the relativistic mass changes of the
electrons but neglecting ion motion. Initial spa-
tial irregularities of the wave parallel to its elec-
tric field E steepen, form shocks, and then
break. Electrons are heavier in the region of
the highest wave intensity so the wave "slows
down" in this region, allowing the lower-intensi-
ty portion of the wave to "catch up. "

Although we cannot analytically follow the evo-

dp/dt =-E(x, t),

an/at+ anv/&x = 0,
&E/Bx= —(n, —l),

(lb)

lution of the wave after it has broken, wave
breaking observed in computer simulations in-
variably causes strong plasma heating so this
mechanism may have an important influence on
the absorption of large-amplitude waves in plas-
ma. Since the waves break in the absence of ion
participation, substantial absorption of the wave
may occur before the development of the decay
instability or related instabilities, which cause
anomalous absorption of the wave over ion time
scales. Indeed, to neglect the ion dynamics,
which play a crucial role in these later instabili-
ties and in profile modification by the large-am-
plitude wave in the presence of a density gradi-
ent, we must assume that wave breaking takes
place before these other processes significantly
develop.

We begin with the cold-fluid equations for the
electrons and assume that the ions form a uni-
form neutralizing background:
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where d/dt= 0/Bt+ v&/Bx, v(x, t) =P/(1+p')'",
and we have normalized all times, velocities,
momenta, and distances to w~ ', c, m,c, and c/
co~, respectively. The magnetic induction has
been neglected for an electromagnetic wave near
cutoff or for an electrostatic wave. Operating on
(la) with d/dt, we find

d2p/dt2+p(1+p2) '"=0. (2)

The factor (1+P') '" represents the local de-
crease of the plasma frequency due to the rela-
tivistic mass increase of the electrons. We now
transform to the frame xo moving with the fluid,
defined by xo = x —I dt v(xo, t), where x is the lo-
cation of the fluid in the lab frame. In the mov-
ing frame

0 2P (x t)/0 t2 +p (1 +p2)-l/2 0 (3)

The first and second terms on the left-hand side
of (4) are the wave energy and particle energy,
respectively, so (4) expresses energy conserva-
tion, I' being the maximum momentum. The
time evolution of P is analogous to that of a par-
ticle moving in a potential (1+P')'". The motion

l2-

l0-

a generalization of the equation describing the
oscillation of a large-amplitude plasma wave. '
Using (3), we find xo(x, t)= x+&P(xo, t)/&t, where
we have chosen &P (x„ t = 0)/& t = 0 for simplicity.
The first integral of (3) yields

(sp /a t)'/2+ (1 +P2)'/2 = II(x,) = [1+P '(x,)]"'.

is periodic with f requeney'

~(lf) &/21/2 1 dP /[ff (1 +P2)l/2]l/2$-1 (5a)

=1 —3P '/16 for P «1, (5b)

=w/(8P )'" for P»1, (5c)

which is a monotonically decreasing function of
II.' Since H is an arbitrary function of xo, each
particle oscillates independently in this frame at
its appropriate frequency.

We now consider a wave which is initially spa-
tially uniform (II is independent of xo) a,nd per-
turb it at t = 0 by modulating its amplitude (H is
now a weak function of xo). The particles initial-
ly oscillate in phase, but since their periods are
slightly different, the relative phase of the indi-
vidual particles increases secularly. Because
of the phase shift, some of the particles begin to
catch up with their neighbors, thus increasing
the local density. This process is illustrated in
Fig. 1 where we show the results of a numerical
calculation of the particle displacement x as a
function of time for p(x, 0) = 3+0.6 sin(l/x/5). The
motion of each individual particle is periodic but
the electron density (line density for a given t)
evolves rapidly as the relative phase of the parti-
cles increases. In Fig. 2 the electron density is
shown as a function of x at several times around
t-14. The crucial difference between the evolu-
tion of the wave in Figs. I and 2 and that of the
nonrelativistic large-amplitude plasma wave is
that the plasma wave is periodic over the interval
2m/&o~ while in the present calculation the phase
shift of the particle is secular and hence the peak
of the density profile increases with each period
until the wave breaks. A half period after the
curves shown in Fig. 2, wave breaking occurs.

The electron density in the lab frame is given
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FIG. 1. The particle displacement x(xo, t) is shown
as a function of time. The particles are initially dis-
tributed uniformly but have momentum p(&, 0)=3+0.6
&sin(2x/5) with dp( t=x0)/dt=0.

X (up/c

FIG. 2. The spatial dependence of the electron den-
sity is shown at &t =12.4, 13.2, 14.0, 14.8, lb.6, and
16.4.
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plot the constant-II curves in the f,g plane when
5'~& ~7, respectively (the curves are symmetrical
under the transformationg- -g). The station-
ary points correspond to the well, the peak, and
the saddle point (from left to right) in Fig. 3(a)
and to the well in Fig. 3(b). Figure 3, of course,
also illustrates the entire nonlinear evolution of

f and g. H is conserved, so the time evolution
of f and g for a given system is determined by
moving along the appropriate constant-H curve
in the direction indicated by the arrows f. and g
are periodic over an interval T(H). Moreover,
since the amplitude of p is proportional to (f'
+g')"', which varies substantially over the ma-
jority of constant-H curves in Fig. 3, the time
evolution of p will be characterized by large, pe-
riodic, amplitude modulations.

The energy H will change as & evolves in time
and therefore the energy of a given system and
consequently p(t) will be a sensitive function of
how we turn on c. When e is switched on sudden-
ly, the particle will follow the constant-H curve
passing through the origin, which circles the
peak as in Fig. 3(a) when 5' &'-,' and circles the
well as in Fig. 3(b) when 5' &'-,' (the transition oc-
curs at 6'= ~27 when the constant-H curve passing
through the origin intersects the saddle point). P
will exhibit large amplitude modulations. The
rapid change in the topology of the constant-H
curve followed by the individual particles in the
vicinity of 0'='-,' will strongly influence the wave
structure in a density gradient where &~a~'(x)

Equation (10) is valid as long as the dis-
placement of the particles by the wave is small
relative to the scale length of e. We consider a
system in which &' —'-,' is positive in one region
and negative in another. The structure and fre-
quency of the oscillations in the two regions will
be entirely different. In our previous investiga-
tion of the free wave, we found that wave break-
ing first occurred where the variation of the wave
frequency was a maximum. In the present case
the frequency changes most rapidly and hence
wave breaking will take place in the transition
region where O'='-,'. In the nonrelativistic limit
e «1 so the wave will break where ~~(x)=re, .'

We now consider the time evolution of a system
in which 5 & 0 and e increase adiabatically (slow
compared to the period of oscillation) from near-
ly zero to some final value. 6(x e "concurrent-
ly decreases in time from a large initial value.
The action J = ggdf (g and f are canonical con-
jugates) is an approximate constant of the motion.
The constant-H waves initially have the topology

shown in Fig. 3(a) with the peak (at f,= ~ ') lying
very near the origin. The particles encircle the
peak on the constant-H curve passing through the
origin. The peak moves towards higher f as c
increases, and since J~6 '=0, the particles
must follow the peak. Hence, p(t) ~2(s/3)'"5 '
x coscoot. The plasma responds linearly because
of the large mismatch between the plasma and
driving frequencies. However, when 5' &~-,', the
peak abruptly vanishes as the mass change of the
electrons becomes important. The particles then
follow trajectories similar to those passing
through g=0 in the right-half-plane of Fig. 3(b).
When 6 is also x dependent, wave breaking will
take place in the vicinity of &'='-,' where the
structure of the wave changes rapidly. In the
nonrelativistic limit 6» 4' so the plasma contin-
ues to respond linearly and wave breaking does
not occur. '

We emphasize again that the spatial variation
of the local frequency of the wave causes the
wave breaking of both the free and mode-convert-
ed waves. The phase of the wave advances more
rapidly in the high-frequency region so the elec-
tron fluid in this region overtakes the fluid in
the low-frequency region, causing the wave to
break. The increase of the electron mass in the
high-intensity region of the wave produces the
frequency variation in the free wave while a com-
bination of this effect and the spatial dependence
of the plasma frequency in a density gradient
causes the frequency variation of the mode-con-
verted wave. The frequency variation of the non-
relativistic, mode-converted wave is produced
solely by the latter effect. '
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We analyze the conditions for observing interference effects in transition radiation at
optical frequencies produced by ion clusters of considerably smaller size than the wave-
length of the emitted radiation. We consider the possibility of using these effects in the
study of the clusters' structure and alignment when they traverse solid films. Numerical
results are obtained for 82+ incident on aluminum.

When charged particles pass through the inter-
face of two media with different optical proper-
ties electromagnetic radiation is emitted. This
"transition radiation" (TR) has been studied,
from both the microscopic' and macroscopic'
point of view. Experiments give good agreement
with the theoretical calculations. '

Recently, the irradiation of solid films with
molecular-ion beams has been the subject of
much interesting work, and in particular studies
of transmission, ' alignment effects, "and energy
losses' of molecular beams in channeling and
bombardment in random directions.

In this work we wish to consider interference
effects in TR in the optical range generated by
nonrelativistic ion clusters of much smaller size
than the wavelength X of the emitted radiation.
Furthermore, we wish to consider the possibility
of using these effects in the study of the struc-
ture of the clusters.

Let us consider a cluster of particles moving
with average velocity v, through the surface z = 0;

j(r, f) = zg„v„Z„e5(r —r„—zv„t),

where v„ is the velocity of the nth particle, z„e
its charge, and r„= (x„,y„, z„) its position at
time t=0. The sum over n runs over all parti-
cles of the cluster. We will consider v„=e, +u„
with ~u„) «v, .

Performing a Fourier transformation from the
variables x, y, z, t to the more convenient k„', k, ',
z, ~ we obtain

j(k', z, (u) =Q„j„(k',z, (o),

where k' = (k„', k„'), p„= (x„,y„), and

(2)

the particles are normally incident to this sur-
face and come from a nonmagnetic medium with
dielectric constant «(&u) (for z ( 0) into the vacuum
(for z & 0). The approximation of considering the
first medium as semi-infinite is justified if the
thickness d of the foil is large enough so that the
processes at the two surfaces may be considered
to be independent of each other (d»A).

The current density generated by the cluster
ls

3 (k', z, m) = (2s) ' 'zZ„e exp( —i [k .p„+ (z„—z)(u/v„]j.

The driving Hertz vector produced by this current in an infinite homogeneous medium of dielectric
constant e is

II(k', z, u) = (4mi/ue) g„(k"—e u'/c'+ u'/v„') 'j „(k', z, m). (3)
In order to match the fields at the surface z = 0 we must add secondary fields to the driving fields

described by Eq. (3). These secondary fields are solutions of the homogeneous wave equation with co-
efficients determined by the boundary conditions and lead to transition radiation. In this way we obtain
for the radiative part of the Hertz vector in the vacuum region for nonrelativistic velocities

II„d(k', z, &u, ) = II,~'(k', z, u)Q„Z„(v„/vo) exp[ —i(k' ~ p„&uz„/v„)],
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