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Spontaneous symmetry breaking of gauge supersymmetry to global supersymmetry is
seen to determine in part the internal-symmetry gauge group through the equations R,
=Ag,p- For the case A # 0 the determination is complete, the resultant group being the
U(1) Maxwell-Einstein coordinate group. For A=0, spontaneous breaking automatically
requires parity breakdown in the vacuum, and is consistent with SU(2) ® U(1) ® color.

Theories based on supersymmetry' possess
the interesting feature of placing Fermi and Bose
fields in the same multiplet. When supersym-
metry is combined with the principle of local
gauge invariance, all fields, Fermi and Bose,
become gauge fields.? Further, the non-Abelian
gauge invariance determines the self-interactions
of the gauge fields, greatly reducing the arbitrar-
iness of such theories. Thus gauge supersym-
metry forms an interesting framework for unified
gauge theories of interactions. Previous work
has shown? that if in fact a spontaneous break-
down of gauge supersymmetry occurs, then a
unification of different interaction structures
could arise. The purpose of this note is to show
that a breakdown of gauge supersymmetry does
indeed occur spontaneously, and to discuss some
of its consequences. The resultant vacuum state
then possesses a generalized global supersym-
metry, and rigorous Maxwell, Einstein, and
(perhaps) color local gauge invariance remains.

The nature of the internal symmetry group is
at present an unresolved problem in unified gauge
theories. While there are several very interest-
ing suggestions, no fundamental principles exist
for determining this group. The internal sym-~
metry enters gauge supersymmetry in the follow-
ing manner. The total group of gauge supersym-
metry is the group of general coordinate trans-
formations z% =z% + £4(2) in the Bose-Fermi su-
persymmetry space z* = (x*, 6%%), Here 6%® are
a set of anticommuting ¢ ~-number Majorana spin-
or coordinates; a=1,...,4 is the Dirac index
and a=1,... N is the internal-space index. (We
will suppress the latter when no ambiguity re-
sults.) Einstein gauge invariance corresponds to
the case &*(z)=t*(x), £€*=0, while the internal-
symmetry gauge group is generated by Fermi
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transformations on the internal-symmetry index
only, e.g., & =0, £*%=A"(x)(M,),0%". [M, is a
constant matrix and A"(x) is the gauge function.]
Thus, priov to spontaneous brveakdown, the in-
ternal gauge group of the theory is GL(N; R) and
is uniquely determined by the dimensionality of
the Fermi space. Spontaneous symmetry break-
ing arises as follows. In gauge supersymmetry
all fields are components of a single gauge su-
permultiplet g, 5(2z), the metric tensor of super-
symmetry space: ds?®=dz*g,adz®. Gauge super-
symmetry uniquely determines the field equa-
tions to bed

Rup[&cpl=2gap, A=const (1)

(which explicitly shows how the gauge invariance
determines the field interactions). At the tree
level, spontaneous breaking is determined by
looking for nonvanishing solutions of Eq. (1) with
Zap replaced by its vacuum expectation value
245?(0)=(0| g45/0). Under an arbitrary trans-
formation, the gauge change of g,z is 0g4p
=g45'(2)=-g45(2), where g,5'(2’) is the tensor
transform of g,5. After spontaneous breakdown,
then, the internal-symmetry group reduces to
those transformations £*° which leave the “vacu-
um metric” invariant: 6g,5(® =0.

We restrict our considerations here to those
vacuum solutions invariant under a (generalized)
global supersymmetry* group (as well as a re-
maining local gauge group). The possibility aris-
es, however, that vacuum solutions may exist
only for certain choices of the internal symmetry
space (particularly since supersymmetry does
not break easily). Thus the requirement that
gauge supersymmetry spontaneously break to
global supersymmetry may determine, at least
in part, the nature of the internal symmetry
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group. This possibility appears to us to be a
unique feature of gauge supersymmetry. There
are two independent cases: A#0 and A=0. In the
former, spontaneous breaking occurs only for N
=2 (Dirac spinor coordinates) and the theory
completely determines its own symmetry group.
In the latter case the dimensionality of the space
does not appear to be determined, but spontane-
ous breaking occurs only if parity (P) and charge
conjugation (C) arve not conserved. The N =4 pos-
sibility accommodates broken SU(2)® U(1) and
maximal P and C nonconservation. It is also
possible to include a conserved color group, and
so one may begin to build realistic looking mod-
els based on gauge supersymmetry.

(1) Case A+0.—The generalized global super-
symmetry transformation is generated by &*
=420I'"9, £**=56%? where 6%® is an infinitesimal
which anticommutes with all Fermi quantities
and I'*=T'y" is a matrix in the combined Majorana
and internal symmetry space such that nI'! is
symmetric.® We conventionally assume that Fer-
mi and Bose coordinates have the same dimen-
sion and so I" has dimensions of mass. The form
of the metric preserved by this £* is g,,(? =n,,,
guoc(O) == i(yru)ou and gaB(O) =Napt (arp)a(gru)s-
Substitution of this vacuum metric into Eq. (1)
yields to conditions on T':

-2I',T*=x, -TrI',T',=Mn,,, (2)

where the trace is in the combined Majorana and
internal-symmetry space. These relations are
consistent only if the internal-symmetry index N
equals 2, i.e., the internal space possesses an
O(2) [or U(1)] symmetry. The only parity-pre-
serving solution of Eq. (2) is I'*=By¥ where 8 is
a (real) constant of dimensions of mass. Equa-
tion (2) yields 88%=X. The physical fields are
then deviations from the vacuum expectation val-
ue of the metric: g45(2)=ga5? +hsp(z). Thus
writing®

By (2) =Ry, (0) +66p,, (%) +. ..,

huoc(z )= gasp(x) +(Be )a[eAp(x) + a(x)r,ﬂ]

+oen,

®3)

haﬂ(z)=ﬂa6¢o(x)+- ey

one may identify A,(x) as the Maxwell field and
8w (¥)=ny, +h,, (x) as the Einstein field; J(x) is a
charged spinor field while S,(x) is the gauge me-
son for scale transformations.? Electromagnetic
gauge transformations are generated by £¢
=Ax)(€0)*, £=0. Only this gauge invariance
(along with the Einstein gauge invariance) is pre-

served by the vacuum metric g45?. [This is the
U(1) gauge invariance of the theory.] Thus, for
example, the scale transformation gauge, £¢
=14(x)6% of S, is spontaneously broken. This
breakdown of scale invariance allows mass
growth to arise at the tree level for fields other
than the photon and graviton.” Thus a mass term
of the type I‘Xl")‘pu,,’“ﬁzpu,, appears in Eq. (1) in
the field equations for buy- As pointed out pre-
viously,? this is sufficient to achieve a unifica-
tion of electromagnetism and gravity with (cor-
rectly positive) Einstein constant G = ¢?/(8742)
since Eq. (1) has the form® G,[ g, ,(x)]=~=8p ,
+..., and KM [py,] - 4B2pH" =5€*T " +..

Mass growths in the 6% sectors of hua similarly
produce a unification of the Maxwell-Dirac inter-
actions.

(2) Case A=0.—The spontaneous symmetry-
breaking condition here is Eq. (2) with A=0. The
most general I'* consistent with proper Lorentz
invariance has the form I'F=Mgv" + M(qyiv" 5,
where M, o) are real, respectively symmetric
and antisymmetric matrices in the internal-sym-
metry space. M, clearly measures the amount
of parity nonconservation in the vacuum metric.
The trace condition now requires that

Tr[Ms) P+ Tr[M,]P=0. (4)

If M, were zero (and the vacuum preserved
parity) then Eq. (4) would also imply M) van-
ished (since M,y is symmetric). Thus for A=0,
spontaneous symmetry breaking of gauge super-
symmetry implies a vacuum state with parity
nonconsevvation.

To illustrate the above result, we consider a
doublet of Dirac spinor Fermi coordinates (the
simplest nontrivial possibility). In Majorana no-
tation we write the Fermi coordinates as %%,
where ¢ =1,2 is the charge degree of freedom
(Opirac®=0%1" -36*%*) and a=1,2 is a U(2)-sym-
metry space index. The I'* =I'y* which conserves
charge can be written in chiral components: T’
=B"°(—€u,)P,, 0=+, where P,=3(1+icy%) are
the chiral right and left projection operators,
€, is the charge matrix,® and ., are the real an-
tisymmetric matrices of U(2).° Equation (2) (with
A=0) now yields two types of solutions: (i) T,
=(B°+B3T,)P,, and (ii) T, =B* (1 +745)P, +B8~ (1
- T7,)P..'° The B’s are arbitrary constants of di-
mension of mass.

We discuss here in general terms the I'. solu-
tion of case (i). The U(2) Fermi coordinates ad-
mit a set of chiral U(2)® U(2) gauge transforma-
tions with corresponding gauge vector mesons in
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the metric:
h;m = (EtA)ocva(x) +ooo, lag=U,P,. (5)

Those transformations £*=2A%(x)(,6)* whose ¢,
=P, do not commute with I'. are spontaneous-
ly broken; the corresponding vector mesons will
acquire masses scaled by the 8’s. This is the
case for the charged right chiral W mesons. On
the other hand, the entire subgroup SU(2), ® U(1)y
commutes withI'., and so I'. produces no mass
growth for these mesons. However, SU(2),

® U(1)y does not preserve the 145 part of g,5?,
and this accounts for mass growth of these me-
sons.' In particular, only the W,* and Z, be-
come massive, while the photon combination re-
mains correctly massless.'? Three Goldstone
bosons arise in hyg,

hop=[niev® (L, @, + 1@ 2+ g Nop+ ..., (6)

and may be absorbed by the vector mesons into
the gauge-invariant combination W ,*?+9 ¢ "2,
Z,+8,¢, (e.g., in the unitary gauge).

The actual detailed way in which the mass
growth for v,4, p,,, etc., occurs is more com-
plicated than in the A #0 theory. Thus even though
scale invariance is spontaneously broken and the
B parameters of dimension of mass enter the
metric, the tree contributions to the masses van-
ish since by Eq. (2), I',I",=0 for x=0 (e.g., mass
terms such as I',I'*p,,, are now zero). Mass
growth does occur dynamically though. Thus the
scalar field f(x) appears in z,g:

hctﬂ =M0(§€)a(-é€)ﬁf(x)+ ey (7)

where the arbitrary mass M, has been factored
out so that f(x) has canonical Bose dimension.
f(x) cannot be gauged away, and the term M, fp u
appears, for example, in the p,, equations.
From interactions with a set of axial vector me-
sons, hua=(9i€75)aa“(x)+ ..., we find that at the
one-loop level (0| f]0)~M, and is finite. (At high-
er order, the mass will also depend on the 8’s.)
Similar mass growth occurs for other bosons.

(3) Concluding remarks—The above discussion
shows that spontaneously broken gauge supersym-
metry with A =0 accommodates the weak, electro-
magnetic, and gravitational interactions in a uni-
fied fashion. The theory automatically supplies
several mass scales, B° 8%, and M, as is need-
ed for such diverse interactions. The simplest
way of including the strong interactions would be
to give a color index to the Fermi coordinates:
6%%c, ¢=1,2,3. One then has an additional mass-
less SU(3) octet of color gluons which could gen-
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erate the strong interactions. (This possibility
will be discussed in more detail elsewhere.) One
of the features of gauge supersymmetry is that it
is a very tightly constrained structure so that the
additional condition of spontaneous breaking great-
ly reduces the allowed possibilities. There are
other constraints not yet examined which may
further limit the internal symmetry group pos-
sibilities, e.g., one must choose only the absolute
minimum of the effective potential, and also the
resultant theory must be renormalizable. (The
fact that the one-loop calculation of (0| f|0) gives
finite results is a hopeful sign for the latter.) It
also remains to be examined whether a renormal-
izable theory which includes gravity can be con-
structed without ghosts being present. Prelimi-
nary investigations at the classical tree level indi-
cate the possible existence of tachyons, but with
superheavy masses ~ 3. If such fields do indeed
exist, one might expect that in the Appelquist-
Carrazone limit 8=, these tachyons would dis-
appear in the effective Lagrangian which governs
the “low”-energy («<10% GeV) dynamics. This
important question is currently under investiga~
tion.
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R a5 is the contracted curvature tensor in supersym-
metry space. Thus Eq. (1) is a set of second-order dif-
ferential equations for the fields g,5. All notation is
as in Ref. 2.

4This remaining global supersymmetry (of Ref. 1)
would later be broken dynamically.
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5We use the notation 145 =(~ C~1) 45 where C is the
charge conjugation matrix. For Majorana spinors 6,
= (6149 4=6Png,. The choice T'* =y* corresponds to the
global supersymmetry of Ref. 1.

Seaa, is the real antisymmetric charge matrix in the
0O(2) internal-symmetry space: €j;=1=—¢€y. The con-
tribution to k,q(2) which is independent of 6%, i.e.,
Juslx), has been omitted in Eq. (3) as it is pure gauge
and can be eliminated by the gauge transformation 3
=Aabwye, £%=0.

TAs pointed out recently by S. Weinberg (to be pub-
lished), it is the formal scale invariance of certain glo-
global supersymmetric models that prevents the break-
down of supersymmetry at the dynamical (loop) level.
(The scale anomalies apparently do not modify this re-
sult.) Thus the appearance of explicit breakdown of
scale invariance in gauge supersymmetry implies that
the further dynamical breakdown of the remaining glob-
al supersymmetry is to be expected.

8As pointed out by R. Jackiw [in Laws of Hadronic

Matter, International School of Subnuclear Physics
“Ettore Majorana,” Erice, 1973, edited by A. Zichichi
(Academic, New York, 1975), p. 225], the breakdown of
scale invariance should lead to a Goldstone boson whose
subsequent Higgs absorption might result in a mass
growth for the graviton. Such a mass growth does in-
deed occur here, but for p,, and not g,,(x), and so the
graviton remains correctly massless. ¢, and S, in
Eq. (8) are the Goldstone bosons absorbed by p,,, .

%One has p, = }{e,eTy,iTy, €73}, Where [, ud= — € gl -

IOI‘+ and I'. differ only by chiral interchange. Spontan-
eous breaking, of course, can only say that the theory
prefers one chiral state over the other, but not which
one.

UThe chiral right mesons also grow additional mass-~
es by this mechanism.

LThere is also a second massless vector meson in the
U(2) ® U(2) set corresponding to heavy~particle number
(or lepton number). There exists the possibility that
this meson acquires a mass dynamically.

Fusion of N + !2C at Energies up to 178 MeV*
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The cross section for the fusion of YN +!2C has been determined at bombarding energies
covering the range Eq, =43-178 MeV (3 to 12 times the interaction barrier height). The
cross section decreases slowly with increasing energy and, at the highest energy, sug-
gests that %Al has been formed with an angular momentum equal to the liquid-drop limit,

Although there is considerable experimental in-
formation on fusion cross sections, oy, for
heavier systems,' 4, +A,= 40, little information
is available at high energies for lighter systems
with A, +4,=30. This may be due to the serious
difficulty of separating the products of direct in-
elastic reactions and of fusion when the evapora-
tion residues have masses comparable to or less
than that of the projectile. Experimental informa-
tion in this mass region is especially desirable
because of the microscopic,? time-dependent Har-
tree-Fock® calculations which are now becoming
available for reactions involving light targets and
projectiles. We have therefore undertaken to
measure the reaction products for the system*N
+12C for a wide range of incident energies. An
important contribution to our ability to deduce
fusion cross sections from these measurements
has been the development of a Hauser-Feshbach
computer code* which predicts the laboratory en-
ergies, angular distributions, and relative inten-
sities of the evaporation residues. The main re-

sult of our measurements is that o4, decreases
slowly over an energy range extending from about
3 times to 12 times the interaction barrier; at
the highest energy the deduced critical angular
momentum equals the limit predicted for a rotat-
ing liquid drop.’

Beams of N produced by the Oak Ridge iso-
chronous cyclotron at seven energies in the range
43.9 to 178.1 MeV were used to bombard carbon
foils of 156 and 257 ng/cm?, The target thick-
ness was determined by weighing the foils and by

Rutherford scattering at 19 MeV. The two meth-

ods agreed within their errors of ~4% and ~ 6%,
respectively. The principal contaminants in the
target were *C (1%), *°0O (1.3%), and hydrogen
(= 2%). Reaction products with Z =3 to 12 were
identified with a AE (ionization-chamber)-E count-
er telescope. Angular distributions were meas-
ured in the range 4° to 40° (lab). The accuracy of
the absolute normalization is estimated to be
about + 8%.

The yields of neon, sodium, and magnesium
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