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Here the equation of motion was used and

Y=E-+2(n —1)(k+GZ ') + (1 ——,
' n)Z 'Z.

Use of Eqs. (9), (10), (15), and (26) gives

y Y= —p(2$/g + —', y /g„+6k')+O(n —4).

(31)

(32)

So at a fixed point X=0 if y g0. Hence 6„" is soft there, when v=4.
Fuller details of this work will appear elsewhere.
I am grateful to C. G. Callan for his interest in this work, and to C. I ovelace for reminding me

about Schroer's paper. I would also like to thank H. S. Tsao and N. J. Woodhouse for useful discus-
sions.
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A previously proposed model of hadrons constructed out of quarks and strings is fur-
ther developed into a fully interacting theory in any dimension. It is shown that in two
dimensions ehromodynamics is equivalent to this theory in the sense that the hadronie
spectrum and matrix elements for the strong, weak, and electromagnetic interactions
are identica/ in both theories.

According to some clues, ' in an exact color SU(3) gauge theory (chromodynamics), the dynamics of
confinement may be similar to the dynamics of the string model. These clues, combined with the in-
tuition conveyed by duality diagrams, were the main motivations of previous work, where the first
principles for constructing a detailed model of hadrons out of quarks and strings were studied.

In this paper the model is further developed by adding a new term to the action which permits the
hadrons to interact via a local interaction of the constituents. The resulting fully interacting model de-
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s„+ g g (s„,'"+s, '). (&)
mesons baryons B + quarks

The meson action S„is'

S~= fd~(L,(x,(~))+L,(x,(~)) y„f-dad g),-
where v' gis -the usual Nambu string Lagrangian and L,(xl(r)), I =1,2, describe spin- —, Dirac quarks
following the world lines defined by the ends of the string x,"(7)=x" (v, o =0) and x,"(~)=x"(7, o =w):

Lo( I) VIyp r(Ixlw ~ (xIr ) ( Ir ) NIm~I' (3)

The fields $1'(v) carry flavor (a) as well as color (i) indices which will be suppressed except as noted
The action S~ describes either a I'-shaped or a 6-shaped baryon or both. In. this paper we will con-

sider the 6-shaped baryon whose action is given by

Se = f dv/Lo(x, ) +Lo(x2)+La(x, ) ye(f-+ f + f )da'v'-g),

where the meaning of each term is analogous to the meson qase.
The interaction among hadrons will proceed as a local interaction between quarks: When their cor-

responding world lines meet at a point in space-time a quark and an antiquark can annihilate each oth-
er (or can get created), thus allowing strings to join and split:

(2)

(4)

'f Q fd7 f-d~'6 "~(xI"(~) -x~"(7'))(-xI,') "'(-x,i')
quarks I &4

scribes the strong, weak, and electromagnetic interactions of the bound-state hadrons as well as their
spectrum.

By specialization to two space-time dimensions, and introduction of a new Hamiltonian formalism
for interacting strings, the meson and the baryon spectra, the three-meson strong interaction vertex,
and the timelike as well as spacelike weak-electromagnetic form factors are calculated. The results
are identical to those obtained in chromodynamics. The details and techniques of these calculations
mill be presented elsewhere, while here the main results will be given.

An interacting string model of hadrons. T—he general structure of the model is outlined by the total
action

X Q~(7)(a~y ~ xI~'+mxr~')q~(r')+Q~(r')(y ~ x~~8, +mx~~')gl(r)) (5)

This action is Poincare and reparametrization invariant with respect to both v and 7 which parame-
trize the two colliding world lines. The constant f will be fixed by crossing symmetry.

Invoking the gauge principle discussed in Ref. 2, one couples external weak and electromagnetic
fields W to the flavor indices of the quarks by the minimal substitution

x„" ,8- „x" 8+ -,'iexl, ' ,'xW" (x~-). (6)

This generates a new piece in the yction through Egs. (3) and (5) from which one can obtain the phys-
ical currents of the theory:

g SN,
'= —ieg fd~( x„')"'-$,(7)any W[x,(~)]q,(~)

quarks I
,'ief Q fd7 f—d~'6" (x,"(~) -x~"(~'))(-xl„')' '(-x~, ,2)' '

x Q, (~)a~y W(x, )y-, (7-') +P, (~')-,'Xy W(x, )q, (~)).

The model is written in any number of dimensions.
results in tuo dimensions. The string. —A full analysis of the new longitudinal motions of the string

was given by Bardeen etal. and by Patrascioiu. ' The nth normal mode corresponds to a string which
is folded on itself n times. Quantum Poincare invariance can be easily demonstrated in the light-cone
gauge. '

IMrac particle. In the absence o—f interactions (5) and (7) but in the presence of the string interac-
tions (2) and (4), the Dirac particle described by Eg. (3) has the general solution

4s = &r(~)a(&r»r(7')) +dr (~)v(&r pr(7')) (6)

].522
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Here pi& = p/xi„"/(-xi, ')'/' is the canonical momentum, and p/= ttimgi is a, constant of motion. They
satisfy the relations p'+p'=0, y Pu=ipu, y Pv =-ipse, uu= -vv=1.

In the light-cone gauge x+(v, o) = r, canonical quantization is given by [xi,p/+] =ig + = i-, (b/, b/t]=I:
= {dz,dit]. After normal ordering, p, , takes the form p/=b/tmb/+ditmd/ .Note that Pi' = pi(-x/, 2) "'
is positive.

If the string interaction is removed (y-0) the quarks become free and satisfy B,PI" =0. Then the in-
teraction of Eq. (5) also becomes identically zero for the solution (8). The weak-electromagnetic in-
teractions of Eq. (7), when operators are quantized and properly ordered, reproduce vertices identical
to field theory in lowest order. Crossing symmetry is then satisfied provided f = 4m. This free-quark
result is the first indication of a deep connection between our approach and quantum field theory.

Meson and baryon spectra. specializing to strings with no folds, and following the ideas and gauge
choices of Hefs. 2 and 3, one obtains the light-cone Hamiltonians for noninteracting mesons and bary-
ons from Eqs. (2) and (4):

& = p, '/0, '+ p.'/4. '+y~lx, -x. l, (»)

Z (pl /~pl ) +yBZ lxr x j (9b)

where N = 3 for color SU(3), and pi+ &0, xI, and pI are quantum operators.
We define normalized, color-singlet, hadron states which also have definite transformation proper-

ties under the flavor charges

=+I[bi~-,'X„b/ —dit 2k„d„].-
They are simultaneous eigenstates of the appropriate total momentum P' and the mass operator ~2
=2P+P, etc. , for mesons and baryons:

N-"'b "'d, '*'l 0 n r'). ( N~)-"'~, „b '*'b b» b„'"'l 0 n . . . n
4 ~ ~

where x+ is the eigenvalue of P', and 0 denotes the vacuum with respect to the oscillators. These
eigenstates can be expanded in terms of states labeled by eigenvalues of quark momenta pi+:

(N) 1/2 b tE/td bitl P. I + I+) . (N t) 1/2+ b Qg tb bj t b cb'tl P. k+ I+ q+)004

(10)

The states in Eq. (11) are normalized noncovariantly to b functions in momenta, while the states in
Eq. (10) are normalized covariantly to (2m)(2r+)5(r' r+')b-„„i, etc. The expansion coefficients define
the wave function y for mesons:

(k', l'l n, r+) = 2Wwb(r' —O' —I+)y„"(k+,I'), (12)

and similarly for baryons. By sandwiching P between states of type (10) and (11), one derives an in-
tegral equation for y which determines the spectrum of mesons":

2 2 2 +
b (k+ I+) =yb/. P (k++s+ I+ -s+) ~

2r+ 2k+ 2I+ q'" '
m „(s+)'q'"

and a similar one for baryons (for N = 3):
2 2 2 2Ivf g Blg m y

g+ 2 + O' &
9'

ds, , (q„(k'+s', I' —s', q')+q/„(k'+s+, I', q'-s+)+q ( k+) ++'s, 'q-s+)). (14)

The limits of each integral are determined by the positivity of each argument of y. It is convenient to
scale the quark momenta by r+ and define q&„' (x) —= cp„'b(k+, r+ —k+), where 0» k+/r+» 1, etc.4 Identi-
cal results have been obtained in chromodynamics by considering only planar diagrams, by 't Hooft in
the case of mesons and by Durgut together with the present author in the case of baryons. ' We can now
make the identification 2y„=g'(N N'), 2y =-g'(1+N ') for any N, ' including N=3. Note that chromo-
dynamics chooses the 6-shaped baryon in two dimensions.

Three meson vertex. —This process is represented by a duality diagram in which a string splits by
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qq creation to form two new strings. To first order, the interaction Hamiltonian is obtained from Eq.
(5) by changing the sign and replacing Eq. (8). The result is proportional to s,pj which is determined
by the zeroth-order meson Hamiltonian (9a), B,Pj+ ——yue(xj —xj ), where I denotes an (anti)quark in
the same meson as quark I. Thus, with a careful ordering of the light-cone gauge operators one has

=-,' ify„g (~(xi -x j )(pjpjlpj'P j')"'u(pl, pj)yp(uj p j)

x[pj E(2'(xj +xj ) —xji ) —p j f(2(xj +xj ) —xji )]5j d j (pjpj/pj p j ) +. . . ];

Using standard time-dejendent perturbation theory with the initial meson state labeled by (r, , n, ) and
the final two-meson state labeled by (r,",n, ;r,",n, ) as in Eq. (10), we calculate the transition ampli-
tude f „dr( out~P~, ~

in). The calculation is performed by introducing the intermediate states (11) and
using Eq. (12). The result has the form (2')'5 ' (r,"-r," r,-")A(r„r„r,), where

y graf W7f dl 2dkg+A= 2,~,t, k, )y„,(r, —t, , l, )y„(k, , r, -k, )
2m vN ~l2 +k ll3

This is identical (up to a change of variables) with the result of Callan. Coote, and Gross' obtained in
chromodynamics.

Timelike form factor. —In this process a photon or W boson creates a qq pair bound by a string (me-
sons). To first order, the light-cone gauge interaction Hamiltonian is obtained by replacing Eq. (8) in
the second term of Eg. (7):

Z/2 0(,

P-, =2ief g u(pj Pj)y v(Pj, p j)bj 2
dj Wp (2(xi+x j))5(xj xj )+Ilj Pj Pj

X (pl p j/P j P j )

where operators are carefully ordered. The external field is a plane wave with momentum q&, W„"(x)
=e&~exp[-i(q v q++x)]. The "in" state is ~0;0, 0), and the "out" state represents a meson as in Eq.
(10). The transition amplitude has the form

f dr(out~P~, (in) =2eA„(2w)'5 ' (q" r")(A+a-""q„+A q")e&".

The calculation is performed by introducing the intermediate states (11), giving the result

An identical expression is obtained in chromodynamics. '
Spacelike form factor. For the purpo—se of this paper it is sufficient to calculate only the string dia-

gram (Fig. 1, part a or b) since it directly tests the first term of Eq. (7) in comparison to chromody-
namics. The other diagrams involve the timelike form factor, the three-meson vertex, and the me-
son propagators (spectrum) which have already been compared to chromodynamics in the previous
paragraphs.

The relevant first-order Hamiltonian with ordered operators is

where Wp(x) is again a plane wave with momentum q". The initial and final meson states are as in
Eq. (10). The calculation proceeds similarly to the previous paragraphs yielding a transition ampli-
tude of the form

e 2X„5t„(2m—) 5 (r'" —r" -q")[2e+ r+B(q')+2& "r C(q')],

where

~ 1 ~ 1

y a y
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- . . : (c). .': (el:. ' . .

. :(b) '::

FIG. 1. Spacelike form factor.

with y = q—+/r+, and x =k'/r ' as before. The
full form factor of Fig. 1 has been calculated in
chromodynamics by Einhorn. ' The results for
Fig. 1, part a, are identical in the two theories.
As q+- —~ the form factor decreases with a pow-
er law, ' in contrast to previous different attempts
in the string theory.

Discussion. —Every tecum of our total action has
now been tested relative to chromodynamics by
comparing selected matrix elements. Our theory,
taken in the no-fold string sector, fully agrees
with the planar diagram results of chromodynam-
ics. Corrections to the planar diagrams are in
one-to-one correspondence with string splitting
and joining diagrams. Such corrections, in both
theories, are built up perturbatively from the
propagators and vertices discussed in this paper.
Therefore, the two theories are expected to agree
to all orders. This, however, needs a more rig-
orous proof.

The present theory predicts additional states in-
volving folded strings. ' Folded strings are a fea-
ture of any dimension, and are already present
in the standard treatment of the string. A fold
always moves with the speed of light. On the ba-
sis of the agreement already found, I would con-
jecture that chromodynamics also may contain
corresponding bound states. For example, color-
singlet bound states of quark, antiquark, and glu-
ons are possible in principle, with the gluons
representing the folds. The picture is completed
by associating the string with the three types of

flux lines that must exist between the SU(3)-col-
ored quarks and gluons. The gluon must have two
flux lines attached to it while the quark has only
one. We conjecture that the dependent degrees
of freedom of the gluon field are responsible for
a "potential" associated with the flux lines, while
the canonical degrees of freedom are responsible
for the folds.

The independent longitudinal modes' were clear-
ly essential for agreement with chromodynamics,
so they must be retained in higher dimensions in
the string approach, if such agreement is de-
sired. The theory is then nonlinear and nontrivi-
al to solve. Its low-energy spectrum will differ
from dual models.

Will the exact equivalence persist in four di-
mensions? This is likely' and it would be very
interesting to develop both theories hand in hand
in four dimensions.
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