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should not allow oneself to be too discouraged simply
because (17) did not agree with some experiments.

It may be argued that if Dirac's quantization condi-

tion e e =n/2 is not satisfied then the field of a magnet-
ic monopole of strength e cannot be taken as a realiz-
able physical situation. See Ref. l.
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The problem of the improvement term of the energy-momentum tensor 8» in y theory
is reconsidered. A unique finite improvement coefficient is shown to renormalize 0».
Dimensional regularization is used and the improvement coefficient depends only on the
space-time dimension. Up to three-loop order but not beyond, the value suggested by
conformal arguments works. But if use is allowed of 't Hooft's methods to sum the di-
vergences, then this value does work.
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Then the canonical energy-momentum tensor is'

Tpv= ~p@o~u'Po 8'pv ~ (2)

To renormalize the connected Green's functions
of T„„ it is sufficient' 4 to define an improved
energy-momentum tensor

and to choose the improvement coefficient II, ap-
propriately. I ignore the renormalization needed
of the vacuum expectation value of 8„„.

To define unrenormalized quantities I use di-
mensional regularization' throughout.

Standard considerations say that introduction
of a counterterm entails a corresponding renor-
malized parameter to compensate for the arbi-
trariness in the renormalization prescription.
Since the operator po' is multiplicatively renor-
malized, by a factor' Z Z ', I write

Ho = (G +ksZ )Z '.
Here k~ is the "renormalized improvement coef-
ficient", and 6 is a counterterm, to be defined,
which is independent of h„. Gravity" couples to
matter through e„„sowe have a new coupling
between gravity and matter. (The term in the
Lagrangian is' ' --,HpRyp where g is the sca-

The problem of renormalizing the energy-mo-
mentum tensor in y theory has often been con-
sidered in the past. ' ' As I will show, improve-
ments to the treatment can be made.

In terms of the bare field q„ the Lagrangian j.s

lar curvature. ) Thus it is desirable to find some
natural criterion to fix the improvement term.
I will consider four criteria:

(i) That" in curved space-time the kinetic en-
ergy term in (1) be conformal invariant. In n
space-time dimensions this gives Iro = —,(n- 2)/
(n —1).

(ii) That' Ho be such that when n ( 4 the opera-
tor 6„" is soft according to an uncritical applica-
tion of the argument of Ref. l. Again Ho= ,'(n-2)/—
(n-1). If n=4, the argument is fallacious. ' This
is manifest, for, in effect, the authors of Ref. 1
assume that (n-4)gsy' is zero at n=4, whereas
in fact g~y' has a divergence there. However,
the argument yields a unique value for H, at n=4.
The question of whether g„, is thereby made finite
has not been given a satisfactory answer in pre-
vious work.

(iii) The finite improvement program' ':
Choose H, finite, such that I9&„ is finite in per-
turbation theory.

(iv) The renormalization-group (RG) covariant
8u, : Replace G by G+Z k(gs). Choose k as a
finite function such that, when h~ = 0, a change
in the renormalization mass p. needs no compen-
sating change of h„, but only of g~, m„, and the
scale of y (as usual).

I will prove that the last two criteria are equiv-
alent, at n =4. Also, they agree with the first
two if 't Hooft's methods" are used to sum the
divergences. Further, the finite improvement
program has a unique solution: IIo depends only
on n and equals —,'(n —2)/(n —1) plus nonzero cor-
rections of O((n —4)'). Thus criteria (i) and (ii)
work up to the three-loop order, but not beyond. "
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First, consider

G„„,(q;P) =fd'y P fd x, exp(zy q+igx, . P,.)(r8„„(y)Qq(x, )& . (5)

I define Z, Z, g» and G by 't Hooft's pole-part prescription, "with unit of mass p. . Also, to accom-
modate the RG-covariance definition of L9„„, I set

II, =(G+[k(g )+h„]Z j/Z.
Then the RG equation for G», is

(
2 ~ 1 8

+ P —y m„2 + Ny -—5 G~~„=O .

Here p, y„, and y are as usual, ""and

5 =g(g„)+y h +Pk'+y k,

where

g =y.z. 'G+P(z. 'G)'.

(7)

(8)

The prime denotes differentiation with respect tog~. Note that G is independent" of m„and p, and f
depends only on g„. To eliminate the &/Bh~ term in Eq. (7) when h~ =0 and n=4, we must have

P&k/Bgs+y k = —f, (10)

where p is p evaluated at n =4. The boundary condition I choose is that k is a power series in g~. At
this point I only wish to consider defining the RG-covariant 8„„for n =4; this means that p and not p
appears in Eq. (10).

Earlier work" and a simple one-loop computation (for f) give the following lowest order values:

p=f-g '/w'+0(g„'), y =-,g„/v +0(g„), K =9-',g~/m'+ O(g„') .

Then

(12)

where

(13)

(GZ„-'+ k —II,ZZ. -')(8„8,—g„„)X[q']. (14)

Here the normal product N[@'] (in n dimensions)
is defined by Collins and by Breitenlohner and
Maison, "and G is as before.

Now, by the definitions"' of y and y

(pa/ag +y )z 'z=0.
This and the definition (9) of & give

Zz ' = exp [-f,"dg y (g)/p(g)],

GZ '=ZZ 'f "dgz 'Z &( g) /(P)g.

(15)

(16)

(17)

f(g~) =exp f, 'dg[y (g)/P(g)+-,'g '].
Note that k(0) =-,', which gives agreement in low-
est order with Ref. 1.

To prove equality with the Callan, Coleman,
and Jackiw (CCJ) definition, consider the differ
ence between the RG-covariant 0„, and the value
with a general Il„viz.,

! So far, the equations above have been considered
in their usual perturbation-theoretic sense as
formal power series ing~. However, it is attrac-
tive to assume that they make sense in the exact
theory (if any). Then extracting the leading be-
havior of ZZ ' and GZ ' as n-4 gives

-', ZZ ' —GZ„' = k+ O((n —4)'~') . (18)

Then (14) shows that the CCJ' 8„, is finite and
equal to the RG-covariant g„„, since" it has II,
=-', +O(n —4). But this need not be true order by
order.

Next, 0&„, with IIO arbitrary, is

finite —Z '(ZH, G)(&„&„-g„,—CH)N[y'] . (19)

So to satisfy the finite improvement program, we
will try to find H, as a power series in g„and n
-4 such that Z '(ZH, —G) is finite in perturba-
tion theory. The coefficients may depend on m„
and p, .
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Now Eqs. (11) and (15) show that

X/3

Z 'Z = 1+, " + nonleading. (20)16m' n-4
Hence, if X is any power series in g~ and n —4,
and if XZ Z is finite, then X=O. Thus, (a) if
II0 satisfies the finite improvement program, it
is unique; (b) since Z, Z, and G are indepen-
dent of m~ and p, so is H„and (c) P BH,/Bg~ =0
and hence BH,/Bg~ =0. [Here Eqs. (9) and (15)
were used. ]

Now let
N

H, = gq„(n-4)";

define the qN by requiring the single pole terms
in Z '(ZH, —G) to vanish. From Eqs. (9) and

(15) it follows that

(PB/Bg~+y }(Z 'ZHQ-GZ ') =- f. (21}

This equation shows that, if the single poles van-
ish, so do all the higher poles. Therefore the

finite improvement program works. Since H, is
a coefficient of the bare field, its success in be-
ing finite is independent of the renormalization
prescription.

Since the value of Z '(ZH, —G} at n=4 satis-
fies the same equation and boundary condition as
k, it must equal k. Hence criteria (iii) and (iv)
agree, in perturbation theory.

Next I show that H, differs from ,' (n——2)/(n —1)
by terms of order (n —4)'. The motivation is that
a slight extension of Ref. 4 shows that taking II,
=-,'(n-2)/(n- I) renormalizes 8„, at the three-
loop level. " Such a result looks nonaccidental.
But we will see it is a consequence of the topolo-
gy of the tee-loop self-energy graph.

To extract the relevant information efficiently,
we study 0„". First, however, consider the re-
normalization of the dimension-four operators.
Use of the equations of motion and taking of trac-
es and divergences shows that there is only one
independent renormalization (besides Z, Z, and

g~). Take it to be A in

gsN[q ]—2Al-jq +~4gsg~ q —2g~Z'(Bq ) +2m~ g~Z 'cp .

It has a corresponding HG coefficient

Define
1 1D = (n —1)H, —4 n + 2,

Z =(XP/g, --,'yZ)/Z .

Then

PE"r.E =P( 'r'), --
8„"=~a' "(2g~r p)Ae') --- .Xr( eB)']+~ 2&m'(2+r+ r)Ae')+(» 'z+ N+-. r)l:l&[y'],

(22)

(23)

(24)

(25)

(26)

(27)

where the equation of motion has been used.
I et the first nonzero term in n ——,'y' be of order gs Then Eq. . (26) shows that the lowest-order di-

vergent term in E is O(gz"") and is a single pole. Hence D is O((n —4) ")to make 8&" finite. Topol-
ogy of one- and two-loop self-energy graphs shows that m ~ 2. Explicit calculations up to three loops
give

~ = ~g~/(16~')' - 7I g~'/(I«')'+O(gs'»

r = r'gz'/(1«')' —
8 gR'/(16~')'+ O(gB'),

(28)

(29)

so that ~ =2.
Finiteness of 8» is equivalent' to finiteness of 9& . So the conformal value of II, makes 8&, finite

up to three loops and correct up to two, but not beyond.
Finally, I show that 8» defined above has a soft trace at a fixed point (i.e. , if |1=0). This statement

and its proof below depend on assuming that the equations used, which are derived in perturbation the-
ory, are valid in the exact theory. Schroer' proved that 8„"can be soft only if /=0, and for one value
of k~. So I put H, =(G+kZ )/Z in Eq. (27) to get

8„"= —.', V' "(p+ 4—g~I')Aq ']+ I'A(Bq )']+&'(2r.+1 —&)Xq 'l. (30)
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Here the equation of motion was used and

Y=E-+2(n —1)(k+GZ ') + (1 ——,
' n)Z 'Z.

Use of Eqs. (9), (10), (15), and (26) gives

y Y= —p(2$/g + —', y /g„+6k')+O(n —4).

(31)

(32)

So at a fixed point X=0 if y g0. Hence 6„" is soft there, when v=4.
Fuller details of this work will appear elsewhere.
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A previously proposed model of hadrons constructed out of quarks and strings is fur-
ther developed into a fully interacting theory in any dimension. It is shown that in two
dimensions ehromodynamics is equivalent to this theory in the sense that the hadronie
spectrum and matrix elements for the strong, weak, and electromagnetic interactions
are identica/ in both theories.

According to some clues, ' in an exact color SU(3) gauge theory (chromodynamics), the dynamics of
confinement may be similar to the dynamics of the string model. These clues, combined with the in-
tuition conveyed by duality diagrams, were the main motivations of previous work, where the first
principles for constructing a detailed model of hadrons out of quarks and strings were studied.

In this paper the model is further developed by adding a new term to the action which permits the
hadrons to interact via a local interaction of the constituents. The resulting fully interacting model de-


