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I show the connection between the magnetic monopoles with quantized strength and the
form of solutions of gauge fields. A generalized electromagnetic field tensor f» and its
physical implications in a unified gauge theory are di scu ssed.

Recently, an excellent global formulation of
gauge fields and an intrinsic description of elec-
tromagnetism were discussed by Yang and Wu on
the basis of the concept of noninte grab 1e phas e
factors. ' ' This concept, in its global ramif ica-
tion, leads to the interesting result that any gauge
field must have a magnetic monopole of quantized
strength, which depends only on the type of global
gauge . The global gauge is a natural general iza-
tion of the usual concept to deal with the intrica-

cies

s of the monopole fieM. It is remarkable that
the mathematics of the global formulation of gen-
eral gauge fields are wonderfully related to the
topology of the fiber bundle, a natural geometri-
cal concept.

In this paper, these results are derived and un-
der stood within the usual local gauge formulation
in terms of the forms of gauge fields. I also dis-
cuss a generalized electromagnetic field tensor
f„„which satisfies the Maxwell equations every-
where except at the position of the monopole for
the static case. The electric charge and the mag-

netic charge play symmetrical roles, ' in contrast
to the discussion in Ref . 1. Furthermore, the
quantization condition for the monopole strength
1eads to the pr ediction sin'0 =

& for the mixing an-
gl e in Weinber g 's unified theory. ' This can be
tested experimental 1y. These discussions shed
light on the connection between the global and the
local properties of gauge fields.

Let us consider the SU(2) gauge theory involv-
ing the Yang-Mills field b„"(x) s The phase factor
is defined by'

exp[ie$ b „'(7'„/2) dx" ],
where ~~ are the Pauli matrices. I show that if
b„ is changed in the following way,

p p p

b'„'(x) = e'e"' v'(x)—a„v'(x),

where i,j,h = 1,2, 8, v'(x) is single valued, and
v'v' = 1, then the phase factor (1) is unchanged.
Using a generalization of Stokes 's theorem, one
has

exp( ',ie pb'„~~—dx") = exp( ,'ie JdS""B„b' '—~„)= lim e p[-x-ig»2(d )„eo'" v (s„v&& & sv)]p R

The two- dimensional sphere S&' with radius x 'x ' =R ' can be expr ess ed in terms of two parameters q, :
x' = x'(q, ), where a = 1,2. Since

(d0)p —2&~;,(&x'/&p, )(&x'/&q, )&„dq, dq„(&T „eve&& &,v)' = det(o, v B,v),
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Eg. (4) can be written as
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which are obviously conserved, 8 "j„=9"4„=0.
The total magnetic charge e related tof&„ is

e = fdS""f„„/4n = n-/e, (12)

where n is an integer related to the topological
structure of v'(x). To see this, write the unit
vector v" in the form v "(x) = u'(x)/[u'(x)u'(x) j'~'.
Suppose that x = x' is an isolated zero of u "(x),
i.e., u (x') =0. The integer n is the Poincare-
Hopf index of the zero x'. The Wu- Yang solution
(6) corresponds to v '(x) = x'/r, and hence u' = x'
has an isolated zero at x =0 which has the Poin-
care-Hopf index n =1. Thus, the SU(2) gauge field
defined on the global gauge S„discussed by Wu
and Yang' is the field with the form (3) in which
the Poincare-Hopf index of the isolated zero x' of
u'(x) is n Als. o, the condition (5) for b„' in SV(2)
is equivalent to the requirement that in overlap-
ping regions (b„"),and (b„"),be related by a sin-
gle-valued global gauge transformation as dis-
cussed in Ref. 1. I stress that for the solution
(6), the electromagnetic field tensor f„„satisfies
the Maxwell equations, i.e., Eg. (11) with j„=k„
=0, everywhere except at the position of the mon-
opolex =0.

I show that the quantization condition in gauge
theories can give interesting predictions. Let us
consider a nontrivial SU(2) 8 U(1) gauge theory,
i.e. , the Weinberg unified theory with bosons
only, for simplicity. 4 The Lagrangian involves
the photon field A.&, the neutral massive Z&, and
the charged fields W„with mass M~,

b' = 0 b' = e x'/er' r' =x'x' (6)

This spherically symmetric solution is the same
as (3) with v'(x) = x'/r. Of course, (3) is not the
only form for the Yang-Mills field. We may also
have the form

bo = x"G(r)/r, b& =e,„x'B.(r)/r,
for the static spherically symmetric solutions.
A particular complex solution is'

B(r) = (pr —sinhpr)/er sinhpr,

G(r) =i (Pr coshPr —sinhPr)/er sinhPr,

where P is a complex number with ReP 0 0 ~

To understand the physical meaning of the clas-
sical solution of the form (3), I define a general-
ized electromagnetic field tensor f„„asthe SU(2)
field strength along the direction v'(x):

(9)

where 6„' is regarded as the usual electromagnet-
ic potential A „(x).' ' Note that the definition (9)
is different from that defined by 't Hooft. ' The
electromagnetic field tensor (9) is a natural gen-
eralization of the usual E„„used to deal with the
intricacies of the monopole field. I believe that
this is a necessary concept to understand the
physics (i.e. , electromagnetism) of gauge theo-
ries. This is to be contrasted with the usual non-
Abelian analog of the electric and the magnetic
fields. '

When the solutions of the Yang-Mills field &„'
take the form (3), we have

W'~ = (b,~+ ib,~)/W2,

Z" = 5,"cos0 -B~ sin0,

A" = b,"sino+8" cos8,

(13)

and some scalar fields y,', y„and y', where
b, " and B" are the SU(2) and the U(1) gauge fields,
respectively. Because the electromagnetic field
A" is given by the combination b3" sin0+B'cose,
it is natural to define the generalized electro-
magnetic field tensor E», in such SU(2) SU(1)
theory as

(10)

I can define the electric current j„and the mag-
netic current A„by

7p =8 "f
I v & p

= ~&"""'s.fna,

exp(2ie $b& "w~dx") = exp[- ifd'q(det~&, v 8~v~)"2T qj =exp(-i4mnT q) =1,

where the integer n is a wrapping number and q
is a unit vector perpendicular to S&' and indepen-
dent of q', .

Note that the constant factor in the solutions of
the form (3) is completely determined by the non-
linear Yang-Mills field equations. ' For example,
the static Wu- Yang solution takes the form'

Ep„=(&qb„"—S„bq" +ge""bq'b, '}v"sin6+(&qB, &pB„}cos8— (14}

in analogy with (9), where g is related to the charge e by e = -gsin0 in the theory. A particular static
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spherically symmetric solution is given by'

y' = q,'= 0, y,'= —2v 2M~/g,

~ = (x'/r)B (r),

b ~=0 b ~= e. , xi/g~2

sin 6=2' (17)

for the mixing angle 0 in Weinberg's unified the-
ory. The motivation of this assumption is as fol-
lows: In U(1) gauge field theory, such as electro-
magnetism, one has naturally the Dirac quantiza-
tion condition e e =n/2 (n an integer) for the mag-
netic charge e, which corresponds to classifica-
tion of the U(l) bundle according to the first
Chem class; yet in SU(2) gauge field theory, one
has the condition e e =n (n an integer). ' These
can also be domonstrated by explicit solutions of
gauge fields. However, the solution (15) for
SU(2) SU(1) gauge fields does not automatically
satisfy these two conditions as shown in (16).
Since the results of Wu and Yang indicate that any
gauge field must have a magnetic monopole of
quantized strength, ' it is natural and necessary to
explore the physical consequences of the magnetic
charge e satisfying these quantization conditions.
It turns out that if e in Eq. (16) satisfies the con-
dition e e = 1, one gets the result coso = 0 which
destroys the desired unification in Weinberg's
theory. Thus we can only assume Dirac's condi-
tion e e = —,'e . The result (IV) is interesting and
should be tested experimentally. '

It has been stressed that electromagnetism is
the gauge invariant manifestation of the noninte-
grable phase factor exp(ie )A„dx"), which pro-
vides an intrinsic and complete description of
electromagnetism. ' To illustrate a basic differ-
ence between the U(1) and the SU(2) gauge theo-
ries, let us consider the static field A&(x) with
the form, in analogy with (3),

Ao = 0, A; = (1/2e) es'is qW, 9,W~,

where W,(x) =(x- )"x=1/W, (x), It is readily

(is)

where B(r) is arbitrary. This can be readily
verified. It follows from (14) and (15) that the
magnetic charge e is

e = fP&„dS""/4w =-(sine)/g=(sin'())/e, (16)

which is not quantized, in contrast to the case
discussed above. If we assume the Dirac quanti-
zation condition, ' i.e., e e = —,', we obtain

checked that

exp(ie$ A& dx") = exp(- 2wni) = 1. (19)

Furthermore, the field (18) satisfies the Maxwell
equations everywhere except at e~=0 and it is re-
lated to the magnetic monopole with the strength
e =n/e sitting at the origin. In sharp contrast
with the SU(2) case, the constant factor 1/2e in
(18) cannot be determined by the dynamical equa-
tions for the sourceless U(1) gauge field. In gen-
eral, one may have e =n/2e or other values by
changing the constant factor in (18) or the power
n in W(x). A similar situation also occurs in the
global formulation for the U(1) gauge field. 's
This suggests that the quantization of the mono-
pole strength in SU(2) gauge theory is more in-
timately related to dynamics than that in U(1)
gauge theory. Finally I remark that in the global
formulation the quantization condition is closely
related to the global gauge transformation. Yet
from the viewpoint of local gauge formulation
discussed above, the quantization condition and
the dynamical equations which determine e'(x) in

(3) are interlocked.
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Because of the great difficulty in measuring 0, one
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should not allow oneself to be too discouraged simply
because (17) did not agree with some experiments.

It may be argued that if Dirac's quantization condi-

tion e e =n/2 is not satisfied then the field of a magnet-
ic monopole of strength e cannot be taken as a realiz-
able physical situation. See Ref. l.
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The problem of the improvement term of the energy-momentum tensor 8» in y theory
is reconsidered. A unique finite improvement coefficient is shown to renormalize 0».
Dimensional regularization is used and the improvement coefficient depends only on the
space-time dimension. Up to three-loop order but not beyond, the value suggested by
conformal arguments works. But if use is allowed of 't Hooft's methods to sum the di-
vergences, then this value does work.

&=-(S&o) —2mo &o -2 Zo&o .1 2 1 2 2 1 4

Then the canonical energy-momentum tensor is'

Tpv= ~p@o~u'Po 8'pv ~ (2)

To renormalize the connected Green's functions
of T„„ it is sufficient' 4 to define an improved
energy-momentum tensor

and to choose the improvement coefficient II, ap-
propriately. I ignore the renormalization needed
of the vacuum expectation value of 8„„.

To define unrenormalized quantities I use di-
mensional regularization' throughout.

Standard considerations say that introduction
of a counterterm entails a corresponding renor-
malized parameter to compensate for the arbi-
trariness in the renormalization prescription.
Since the operator po' is multiplicatively renor-
malized, by a factor' Z Z ', I write

Ho = (G +ksZ )Z '.
Here k~ is the "renormalized improvement coef-
ficient", and 6 is a counterterm, to be defined,
which is independent of h„. Gravity" couples to
matter through e„„sowe have a new coupling
between gravity and matter. (The term in the
Lagrangian is' ' --,HpRyp where g is the sca-

The problem of renormalizing the energy-mo-
mentum tensor in y theory has often been con-
sidered in the past. ' ' As I will show, improve-
ments to the treatment can be made.

In terms of the bare field q„ the Lagrangian j.s

lar curvature. ) Thus it is desirable to find some
natural criterion to fix the improvement term.
I will consider four criteria:

(i) That" in curved space-time the kinetic en-
ergy term in (1) be conformal invariant. In n
space-time dimensions this gives Iro = —,(n- 2)/
(n —1).

(ii) That' Ho be such that when n ( 4 the opera-
tor 6„" is soft according to an uncritical applica-
tion of the argument of Ref. l. Again Ho= ,'(n-2)/—
(n-1). If n=4, the argument is fallacious. ' This
is manifest, for, in effect, the authors of Ref. 1
assume that (n-4)gsy' is zero at n=4, whereas
in fact g~y' has a divergence there. However,
the argument yields a unique value for H, at n=4.
The question of whether g„, is thereby made finite
has not been given a satisfactory answer in pre-
vious work.

(iii) The finite improvement program' ':
Choose H, finite, such that I9&„ is finite in per-
turbation theory.

(iv) The renormalization-group (RG) covariant
8u, : Replace G by G+Z k(gs). Choose k as a
finite function such that, when h~ = 0, a change
in the renormalization mass p. needs no compen-
sating change of h„, but only of g~, m„, and the
scale of y (as usual).

I will prove that the last two criteria are equiv-
alent, at n =4. Also, they agree with the first
two if 't Hooft's methods" are used to sum the
divergences. Further, the finite improvement
program has a unique solution: IIo depends only
on n and equals —,'(n —2)/(n —1) plus nonzero cor-
rections of O((n —4)'). Thus criteria (i) and (ii)
work up to the three-loop order, but not beyond. "
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