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Exact Renormalization Group with Griffiths Singularities and Spin-Glass Behavior:
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The quenched random Ising chain is treated by a decimation transformation. An exact
recursion relation is derived for the distribution of nearest-neighbor couplings and mag-
netic fields. Fixed distributions associated with Griffiths singularities ahd with the spin-
glass state are explicitly exhibited.

Recent renormalization group (RG) treatments"
of critical phenomena in magnetic models with
quenched impurities indicate that the phase tran-
sition in many such systems is sharp and second
order. Systems with predominantly ferromagnet-
ic exchange bonds develop a spontaneous magne-
tization' [(S&)']„like that of pure ferromagnets at
sufficiently low temperatures. The transition is
associated with a critical fixed point4 of the RG
transformation. This fixed point is sometimes
but not always that of the corresponding pure sys-
tem.

One disturbing aspect of this RG picture con-
cerns the so-called Griffiths singularities. '
These essential singularities in the magnetic
field variable k at h =0 are known rigorously to
be present in certain dilute ferromagnets at all
temperatures below the critical temperature of
the corresponding pure ferromagnet and above
the onset of spontaneous magnetization. While
present RG results for dilute magnets are not
necessarily incompatible' with such behavior,
the Griffiths singularities have thus far failed to
show up in RG analysis.

In addition, sufficiently strong disorder may
produce states with ordering quite different from
that of the pure system. In a system coupled by
a random mixture of ferromagnetic and antifer-
romagnetic bonds, ferromagnetism can be re-
placed by "spin-glass" order. In a spin-glass at
h= 0 the magnetization always vanishes but
[(S&)']„develops a nonzero value at sufficiently
low temperatures. Edwards and Anderson' have
described the spin-glass transition in mean field
theory. More recently Harris, Lubensky, and
Chen, ' using RG methods, found a spin-glass
fixed point in 6 —e dimensions.

In this note we point out that both Griffiths sin-
gularities and spin-glass behavior may be seen
by RG methods in appropriately random one-di-
mensional Ising models. Nelson and Fisher'
have made precise the sense in which there is a

phase transition in the pure Ising chain at T = k
=0. The dilute chain is exactly soluble and known
to possess Griffiths singularities. ' The ferro-
magnetic-antiferromagnetic mixture is trivially
soluble at 8 =0; but, it seems not to have been
appreciated that it has a spin-glass transition at
T =0. Neither system has been treated by RG
methods. As we show below, the probability dis-
tribution for coupling strengths and magnetic
fields of the random chain obeys a simple recur-
sion relation under a "decimination" transforma-
tion." Fixed distributions in the random sys-
tem play the role of fixed Points in the pure sys-
tem. We exhibit fixed distributions correspond-
ing to Qriffiths singularities and spin-glass be-
havior.

Recursion relations. —A random Ising chain"
of N bonds (periodically connected) is described
by the reduced Hamiltonian (S; = +1),

(N+1-=1), where for reasons of symmetry we al-
locate the magnetic field k; at site i between
bonds i —1 and i, so h; =r'(h;, "+h ). The near-
est-neighbor couplings and magnetic fields are
assumed to be independent random variables dis-
tributed with probabilities P, (K) and P, (h), re-
spectively. It is always possible to write'

P, (h) = fdh' db"P, (h' )P„(b")n(h ——.'(h'+ b")),

making the variables associated with each bond
independently random. The quenched random
free energy per site depends functionally on P,
and P„

y = lim N ' J g [dK~dh; P, (K,)P,(h;)]lnZ„. (2)
N~~ &=i

For a particular set of fields and couplings [K;,
h;] the partition function Z„ is given in the usual
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representation as the 2&& 2 trace of a product of
transfer matrices,

preserves the partition function Z//[T] =Z///2[T']
and induces exact recursion relations of the
form

Z„[T]=Tr II T;, T, =T(p„x;,y„z;),

where
I (x2 + y2 z 1x1)(x1 + y2 z 1x2 )

x]
(y, z, +x,x,)(1+x,x,y, z, )

(4)

( (yz)'"
H

x( y/z )1/2)
(p xyz) e p

x(y/z )- 1/2
( } 1/2

x=p '=e ', y=expb', and z=expb". The "deci-
mation" process" (summing over alternate
spins) now defines a new, renormalized, trans-
fer matrix T'(p '1, x,y, z )=T„,T„, which

It is convenient to denote the "active" variables
x,y, z collectively by p, (dp=dxdydz). Recursion
relations then read x, ' =X(p„p2), y,

' = F(p, „p2),
z, '=Z(l1„p2), and p, '=p, p, A(p, „p2). Since the
variables p, &

are random independently for each
bond i with a probability distribution 6'(p) =-[P(x,

y, z), the renormalized variables l1' are distrib-
uted according to'

P['( x', y', z') =f (dp, )(dp2)(P(i, )[P(p )25(x'-X)5(y'-I')5(z'-Z),

which defines the RG transformation (P' = 6t[(P].
The initial distribution of x, y, z is

(P,(x, y, z) = 1 dK db' db "P,(K)P, (b') P„(b")5(x—e 2«)5(y —e' )5(z —e' ) .

(5)

(6)

[P2 changes under successive decimations (P„=6t"[[Po]and in analogy with the pure system" the average
free energy per site is

y [I'„I',]= JdK &,(K}K+ Z 2 '"'"f (dP, )(dP.) [P.(P1)/P. (P 2)»&(P1, P2) (7)
n=0

The fixed distributions [P* =(R[(P*]determine the critical behavior of random models. The special sim-
plicity of one dimension is that, if the variables x, y, z for different bonds are initially uncorrelated,
they then remain so under RG iteration. [In higher dimensions the variables (p, ) become spatially
correlated, even if the variables (p, &) are not, so the analog of (5) requires the full joint probability
distribution(P((p, ;I., ).] Equation (5) is in general intractable. We turn, therefore, to special cases
amenable to analytic treatment.

The randomly dilute chain. —In the randomly bond-dilute Ising ferromagnet the nearest-neighbor
couplings take the values Ko (&0) and 0 with probabilities p and (1-p), respectively. We assume that
the magnetic field has the uniform value h, at each site. According to (6) the initial distribution is"

(P,(x, y, z ) = [p 5(x —e ' 0}+(1 -p }5(x—1)]5(y —e"0)5(z —e"o) . (8)

In zero magnetic fieM &0=0, we have y=z =1 initially and this remains so under iteration. Equation
(4) simplifies and one easily shows that as n- ~, (P„approaches the fixed distribution (P*(x, y, z)
= 5(x —1)5(y —1}5(z—1) characteristic of the pure zero-field paramagnet. In one dimension the Grif-
fiths singularities occur at K0-, h0- 0 and are extracted most cleanlv in the infinite-coupling limit
Ko=~ (ho finite). Only x=0, 1 then appear in the initial distribution (8), so the recursion relation (4)
simplifies to (1 —x, ') = (1-x,)(1-x2). After n iterations [P„contains weights p' at x= 0 and (1 -p' ) at
x = I, so the fixed distribution

6'* = lim 6'„

is restricted to x=1 (K=O). The recursions (5) for this case are simple enough to follow explicitly
and one finds

4'*(x, 2, ») = 2( ))() Px) Z P"'2[2 -e»P[(2m, +))2 ]] -g P ll[» exp[(2m +1)2]])-
Big= 0 ~=0

This is a "high-temperature" (K= 0, zero coupling) fixed distribution; however, the infinite range of
y and z values means that arbitrarily large magnetic fields occur with finite, albeit small, probabili-
ty. It is the presence in [P* of a stable spectrum of these large multiples of the initial field 11, (reflect-
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ing the presence of arbitrarily large coupled
clusters in the chain) which is responsible for
the Griffiths singularities. ' To make this explic-
it we calculate the magnetization per site M(h, )
at Kp =~, Decimation preserves the magnetiza-
tion per site. Since K=O (x=1) in (P*, the prob-
lem reduces to the calculation of the average
magnetization of a single uncoupled spin in a ran-
dom field,

M(h, ) =5(dp, )(dp2)tP*(p, )(P*(g,) tanh[ —,'(b,"+b,')]

=(1-p)'QnP" 'tanhnh„
n= 1

(10)

which is infinitely differentiable but nonanalytic
at Ap & because of the imaginary poles of the
hyperbolic tangent.

The fixed distribution (9) is not unique: it de-
pends explicitly on hp. Indeed, the recursion re-
lations for y

' and &' are trivial" at x =1 (y, ' =y„
z, ' =z,), so any appropriately normalized ~,y, z)
= 6(x —1)f,(y)f, (z) is a fixed distribution of (5).
Most such fixed distributions do not lead to Grif-
fiths singularities: For example, it is straight-
forward to apply this RG method of calculation to
the dilute chain with a finite initial coupling Kp
(finite temperature). The resulting +* has the
same general structure as (9), only the (still dis-
crete) allowed values of y and z are now bounded
above. This 6'* generates the known exact solu-
tione; but, all thermodynamic properties are per-
fectly analytic functions of hp. The key prerequi-
site in generating Griffiths singularities is the ex-
istence of arbitrarily large magnetic fields in the
limiting distribution +*. Griff iths singularities
will, for example, be present in the Ising chain
with bvo randomly mixed coupllngs Kp
Z, &'i finite.

Our calculation is not, of course, directly ap-
plicable to dimensions d) 1. However, if a deci-
mation were carried out" on a dilute Ising model
with d )1, it seems likely that the Griffiths singu-
larities would show up by a similar mechanism,
a zero-coupling fixed distribution involving large
magnetic fields.

The sjin glass -Suppos. e—the initial Ising coup-
lings K& are distributed with P,(K) but all magnet-
ic fields vanish" (h =O, y =z =1). It is convenient
now to write the transfer matrix in terms of m

=tanhK=(1-x)/(1+x), —1-w -1. The recur-
sion relation (4) then simplifies to w, =w, w„so,
written in terms of se, the initial distribution

6', (w) = cosgKP, (K) iterates under the RG (5) as

(P'(w')

=f,dw, dw, (P(w, )(P(w, )5(w' —w,w, ).

There are three fixed distributions of (11): 6'~*(w)
=6(w —1), 6'&*(w) =5(w), and 6'„+(w) =-,'[a(w —1)
+6(w+1)]. The first of these is the familiar fer-
romagnetic (or antiferromagnetic") critical fixed
point and is accessible only from the two initial
distributions 6', (w) =5(w —1) (ferromagnet) and
6', (w) =6(w+1) (antiferromagnet). The second is
the normal paramagnetic (K =0) trivial fixed
point. Its domain contains all initial distributions
(P, (w) with any weight at finite K (~w~ & 1). (P, is
the spin-glass (critical) fixed distribution. It is
accessible from all T =0 (~w~ =1) distributions
with mixed ferromagnetic and antif erromagnetic
couplings (0&p&1), 6', (w) =PS(w-1) +(1-P)5(w
+1). It is a feature of one dimension that an arbi-
trarily small concentration of antif erromagnetic
bonds suppresses the ferromagnetic transition
and leads to spin-glass order at T =0.

It is instructive to explore critical behavior
near the spin-glass transition by expanding about
(P,g*. Taking moments of (11) and linearizing
about the fixed distribution, one immediately dis-
covers that odd moments are annihilated, while
the deviations' 5[w'"]„-=[w'"],„-1of even mo-
ments from their fixed-point values are all rele-
vant eigenvectors with the common eigenvalue A
=2 =2'. We may, therefore, choose a single "re-
duced temperature" to describe the thermodynam-
ics near the transition. A natural choice is t
= 5[w']», which is proportional to [e '~ ~]» near
the fixed point, in direct parallel to the RG work
on pure chains. ' Thus, &f-t' "with n =1. Ap-
propriate correlation and susceptibility exponents
may be defined from the spin-glass analog of the
usual order-parameter correlations"' "G(r)
=[(S,S;,„)']»=D(r/()/~" ' ". Near criticality
G scales under decimation as G(~, t) =G(~/2, 2t),
i.e., a function of W. The spin-glass "suscepti-
bility" y, s =Q„G(r, t) di-verges as t '. We thus
infer directly from R.G analysis" n = v =g =y =1
in agreement with the scaling laws dv = 2 —u and
~ =~(2-n).

Interestingly and perhaps in contrast to higher
dimensions, it appears that 6',&* is not stable
against a uniform magnetic field hp. We have
studied the infinite-coupling problem in finite
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field with initial distribution"

It is not hard to show that the magnetization" sat-
isfies M(h, ) =0 for all h, . In the RG picture one
finds that, as n increases, 6'„equalizes between
~ =1 and m =-1; however, the magnetic field dis-
tribution spreads indefinitely to h =+ ~ rather
than narrowing to h = 0.
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In the finite, &-link chain Mz(ho) -N ~~~ except in the
interval ho-~, where M„(ho) passes smoothly
through zero at 80=0. Thus,

lim [dMN/dhole =0]

is finite and all higher odd derivatives (evaluated at ho
= 0) diverge as N-~, which is connected with the onset
of spin-glass order at 80=0.
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Long-Distance Behavior of the Invariant Charge in Non-Abelian Gauge Theories*
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The long-distance behavior of the invariant charge is investigated. For massive quarks,
the gluon-quark-antiquark charge is equal to the massless Yang-Mills charge. This re-
sult reflects the fact that the infrared limit is reached only as the gluon and quarks ap-
proach their mass shell at the same rate. A nonperturbative scheme in terms of the in-
variant charge, that could explicitly display the infrared structure of non-Abelian theo-
ries, is proposed.

In this short note I want to report some inter-
esting results obtained in an attempt to under-
stand the meaning and the behavior of the invari-

ant charge at long distances within the context of
quantum chromodynamics (QCD).' The ease of
massive quarks is particularly interesting: Even
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