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We have observed the production of a new scalar meson of mass 1255+ 5 MeV and width
79 + 10 MeV. The meson is observed primarily through the interference of the S-wave
and D-wave K, K, production amplitudes in the reaction s P nK, K, at 6 and 7 Gev/c.
The S-wave amplitude and phase are both observed to have Breit-Wigner behavior. The
quantum numbers of the meson are JP =0+ and C =+1 with I =1 preferred.

We report the results of an analysis of an ex-
periment studying the reaction w p- nK, 'K, ' car-
ried out at the Argonne National Laboratory zero
gradient synchrotron utilizing the 1.5-m stream-
er-chamber facibty. Some experimental details
have been published previously. "Briefly, the
trigger required an incident beam particle into
a 7.5-cm-long liquid-hydrogen target in the
streamer chamber, no charged particles emerg-
ing from the target, and signals from at least
two scintillation counters in a downstream hodo-
scope. Some 400000 pictures were taken, ap-
proximately 70%%ug at 7 GeV/c and the remainder
at 8 GeV/c. These data are combined in this
analysis. About 8% of the 400000 events were of
"double-vee" topology and were processed using
TVGP and SQUAW. The distribution of the square
of the missing mass for the 16000 events consis-
tent with K, 'K, ' production has a very prominent
neutron peak with & 1Ão background. After appro-
priate X' cuts and fiducial-volume cuts, we ob-
tain a very clean final simple of 5096 unweighted
nK, 'K, ' events.

We have studied our acceptance as a function
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FIG. 1. The K E effective mass distribution for
all events weighted (full curve) and unweighted (cross
hatched) .
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FIG. 2. The unnormalized moments (Y,~) as a func-
tion of M~g. The smooth curve on P4 is a fit to the
data using f-f' interference (see text).

of the K, 'K, effective mass, M«, the four-mo-
mentum transfer from the proton to the neutron,
I,; and the decay angles in the Gottfried-Jackson
frame, coso~ and q». In all four variables the
acceptance is quite uniform, slowly varying, and
nowhere extremely low. In Fig. 1 the M«dis-
tribution is shown weighted and unweighted (shad-
ed). The average weight is 2.1 and differs from
unity primarily because of target-escape proba-
bility. The average K, 'K, ' effective-mass reso-
lution is +3, +9, and +15 MeV at 1050, 1300,
and 1600 MeV, respectively. The M«distribu-
tion shows the well-known threshold enhancement,
the S*, and a broad peak in the 1350-MeV mass
range from 1200 to 1500 MeV. This broad peak
is in a mass region where the J~ = 2' mesons, the

f, A, ', and f', might be expected to contribute.
Figure 2 shows the unnormalized t-channel mo-

ments (Re Y, ) as a function of M« for ~t )&0.2
GeV'. Here (Re Y, )=f W(Q)Re Y, (Q)dQ, where
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W(Q) is the decay angular distribution normal-
ized to unity. The moments were determined by
a maximum-likelihood fit to each mass bin. Mo-
ments with l & 6 and e& 3 were all consistent
with zero and were excluded from the final fit.
The (Y,') moment, which is dominated by Jp =2'
K, 'K, ' production, is quite broad and is clearly
not explainable solely by f production. The ( Y', ')
moment shows a strong S-D interference pattern.
It can be concluded qualitatively that there is sig-
nificant S wave in the f-mass region, and that the
J =0' and J =2' production amplitudes are
quite coherent.

Our goal in this work is to understand the S-
wave amplitude. To this end we must understand
the D-wave amplitude, i.e., the (Y,') moment
as a function of M«. A recent analysis' of the
reaction II p —nK'K at 6 GeV/c has shown the
presence of f-f' interference in the ( Y,') mo-
ment. ' Using this as a guide, we have fitted' our
( Y,') distribution by f-f' interference using ac-
cepted values for the f mass and width and the f'
mass. We varied the f-f' phase, the f' width,
and the relative f-f' intensity. The best fit' is
shown as the curve on the ( Y,') distribution in
Fig. 2. These results are quite consistent with
the results of Pawlicki et al. ' and we feel confi-
dent that this is the explanation of the broad J~
=2+ bump.

In order to extract the S-wave amplitude, we
have performed a production-amplitude analysis"
and have written the moments in terms of S Dp,
D,„, D, , and cos(ys —y~), the magnitudes of the
S- and D-wave amplitudes and the phase angle
between them, respectively. Here D„and Dy
are linear combinations of the m =+1 amplitudes
corresponding to natural- and unnatural-parity
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exchange, respectively. In this analysis we have
made the following assumptions: No l~ 4 waves
are present; no m=2 helicity states are pro-
duced; nucleon spin-flip dominance; and there
is phase coherence.

The results of the amplitude analysis are shown
in Fig. 3. We note that S and Dp dominate al-
though D y+ and D y are not zero everwhere. The
S-wave intensity is large at threshold (the S*),
decreases, and then goes through a second max-
imum in the region near 1270 MeV. The shape
is very suggestive of an S-wave resonance on a
smoothly failing $-wave background.

The fitted phase difference y» can be used to
extract the S-wave phase if the D-wave phase is
known. Since we observe that the D-wave ampli-
tude can be explained in terms of f and f ' produc-
tion, we have used the corresponding D-wave
phase to calculate ys. In Figs. 4(a) and 4(b) yn
and y~ are shown. There are two solutions for
cps since only Icos —ynl is determined. We note
that solution 1 has y~ changing by -180 in a fair-
ly small range of 34«with a shape quite charac-
teristic of a Breit-Wigner phase variation where-
as solution 2 is slowly varying with no obvious
structure. The smooth curve shown on solution 1
is a least-squares fit with a Breit-Wigner and
yields the resonance parameters M = 1255+ 5 MeV
and I"=79+ 10 MeV and a production phase of 110'
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FIG. 3. Fitted parameters of the amplitude analysis
(see text) as a function of Mxx using data with lt l
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FIG. 4. (a) The D wave phase, y~, fr-om the f-f' fit
to (Y4 ). (b) The S-wave phase obtained from combin-
ing the results from the amplitude analysis (I ps —gal)
with yD from (a). Both solutions are shown. The smooth
curve is a Breit-Wigner fit to the data (c) ISI an. d

ID~I as a function of t for 1.22 GeV & Mzx &1.22 GeV.

1486



VOLUME 36, NUMBER 25 PHYSICAL REVIEW LETTERS 21 JUNz 1976

+ 4' relative to the f' production phase. These
parameters are consistent with the peak in the S-
wave intensity observed in Fig. 3. Thus although
we cannot rule out solution 2, the Breit-Wigner
phase variation of solution 1 combined with the
intensity variation in Fig. 3 impels us to conclude
that we have observed the presence of a reso-
nance with J =0+ and C =+1.

The S-wave resonance must have I~ =0+ or 1
since the K,'K,' system must have G = (- 1)I. If
I~ = 0+, one might expect pion exchange to domi-
nate its production. If I~ = 1", pion exchange is
forbidden. Production of the f meson is known

to be dominated by pion exchange and one mould

expect that if the S-wave resonance were pro-
duced by pion exchange, the production ampli-
tudes would either be in phase or 180 out of
phase in contrast with the fit of 110'+4'. This
suggests that the S-wave resonance is not pro-
duced by pion exchange.

To study the production mechanism further,
we have performed an amplitude analysis as a
function of t. We show in Fig. 4(c) the resulting
fits for ISI' and ID, I' as a function of t for 1.22

&I«& 1.32 GeV. The slope of the t distribution
for [Dol' is 11.9+ 1.2 GeV ' consistent with one-
pion exchange (as expected for the f) but for iSi'
it is 3.7+0.8 GeV '. (The slopes were fitted over
a range of 0.06& I tl &0.36 GeV'. ) This verifies
that the S-wave resonance is not dominated by
pion exchange' and suggests I = 1".

A further argument can be made for the I~ = 1
assignment. The S-wave resonance must be pro-
duced via isovector exchange with unnatural spin
parity. Excluding pion exchange, the candidates
are B exchange (leading to I = 1 ) and A, ex-
change (leading to Io = 0+). It is expected that A,
exchange' would couple dominantly to the nonf lip
amplitude at the nucleon vertex and thus be in-
coherent with w exchange which is dominated by
spin flip. On the other hand, B exchange couples
dominantly to the spin-flip amplitude and is ex-
pected to be coherent with pion exchange. Since
the S-wave resonance production is coherent with

pion exchange, 8 exchange is favored, again sug-
gesting 1 =1 . We conclude that the S-wave res-
onance has the same quantum numbers as the
6(970), and we therefore refer to it as the 5'.

It has been suggested" that the 6(970) is not a
resonance, but an enhancement due to the K'K
threshold. If this is the case, then the 5' would
be the obvious candidate for the I= 1 member of
the 0' nonet of SU(3). It is interesting then that
the isovector states of the 0+ and 2+ nonets with

C =+1 (the qq P-wave states with S=1) have sim-
ilar masses. These are the 5'(1255) and the
A, (1310). This suggests that the qq L ~ 5 coupling
is small and that the missing 1' state (the A, )
might be found near 1300 MeV. Furthermore,
it would be logical to conclude that the S* is a
threshold enhancement [like the 5(970)] and that
another J~I~ = 0+0+ state should exist. Candidates
for such a state have been reported" in the past.
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The vibration-rotational spectrum of the hydrogen molecular ion HD+ has been ob-
served by means of a new ion-beam laser-resonance method employing Doppler-effect
tuning and collisional detection. Six transition-frequency groups between 1642 and 1869
cm I, exhibiting partially resolved hyperfine structure, have been measured to + 1 ppm.
The accuracy exceeds that of present theoretical calculations of HD+ energy levels.

The hydrogen molecular ion is the simplest
molecule in nature, consisting of two nuclei and
a single electron. It has been the subject of nu-
merous theoretical treatments, which begin with
the solutions of the nonrelativistic, one-particle,
two-center problem, one of the few separable
problems in quantum mechanics. ' In the physi-
cal molecule, the constituents vibrate and rotate
about the center of mass. Tables of adiabatic vi-
bration-rotational energy levels in the Iso'g

8
electronic ground state (including nuclear-motion
terms diagonal in the electronic basis) have been
prepared most recently by Hunter, Yau, and
Pritchard. Nonadiabatic (nonrelativistically ex-
act) calculations have also been made for a few
low-lying levels. " In the electronic ground state,
a heteronuclear isotope of the ion will interact
strongly with optical radiation fields because its
mass asymmetry and net charge lead to a sub-
stantial electric-dipole transition moment. A ho-
monuclear ion will interact weakly via its elec-
tric -quadrupole transition moment. '

Spectroscopically, however, the molecule has
remained elusive. While spectra of most com-
mon molecules have been measured with accura-
cies of a few parts per million, the optical ab-
sorption or emission spectrum of the hydrogen
molecular ion has not been seen heretofore. Past
searches for the spectrum have been frustrated
by the gas-phase reaction H, '+H, -H, '+H, which

proceeds rapidly for all isotopes in thermal plas-
mas of appreciable density, keeping H, ' concen-
trations too low for conventional spectroscopic
techniques. At present the most accurate obser-
vational information on energy levels is derived
from vacuum-ultraviolet absorption studies' of
Hydberg-series limits in the isotopes of molecu-
lar hydrogen with uncertainties of a few parts
per ten thousand. At this level the calculations
and data are in agreement. Experimental data of
greater accuracy would make it possible to test
a more realistic molecular model incorporating
a relativistic wave equation and the effects of
quantum electrodynamics.

We have observed infrared transitions between
electronic -ground-state vibration-rotational lev-
els of the heteronuclear hydrogen molecular ion
HD', using a new ion-beam laser-resonance
method. A schematic diagram of the experimen-
tal apparatus is shown in Fig. 1. In a region of
constant electrostatic potential an ion beam of
several keg energy crosses at a small angle
(= 11 mrad) the beam from an infrared molecu-
lar laser. The accelerating potential is adjusted
to Doppler shift an ion transition into resonance
with a nearby laser line. The ions then pass
through a gas target where they are partially
neutralized by charge exchange (and, to a, lesser
extent, dissociated and scattered), and are col-
lected in a Faraday cup.
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