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We show that classical sine-Gordon solitons maintain their integrity to a high degree
in the presence of external perturbations., Two examples, of particular importance in
condensed matter, are described in detail: (i) A model impurity is found to bind low-ve-
locity solitons but merely phase shift those with high velocities, and (ii) external static
driving terms with damping accelerate the soliton to a terminal velocity. The importance
of a translation mode is emphasized and it is concluded that the soliton behaves as a

classical particle in all essential respects.

Nonlinear fields,! particularly those exhibiting
solitary-wave solutions, are now of interest in
many physical problems. Free-field solutions
have been investigated extensively, particularly
for quantum fields? but in condensed matter we
require knowledge of the behavior and integrity
of solitons in the presence of “impurities” or ap-
plied fields. Kink solutions, or domain walls,
occur in magnetic® and ferrodistortive* materials
and in many Landau-Ginzburg expansion contexts.’

In this Letter we describe results of a general
perturbation method for examining these kinds of
problems. The technique is applicable to nonlin-
ear equations possessing translational invariance.
For definiteness we consider the case of a sine-
Gordon (SG) soliton and examine the effect on its
motion of (i) a weak model impurity potential,
and (ii) a constant external driving term and a
viscous term in the SG equation of motion.

For (i) we find that high-velocity solitons pass
through the impurity region with only a phase
shift while those with low velocity become trapped
and oscillate. In case (ii) we find transient per-
turbations which decay rapidly for a large damp-
ing constant and leave a soliton moving with a
terminal velocity determined by the relative mag-

nitude of damping and forcing constants. In all
cases we conclude that the soliton retains a local-
ized shape and that its dynamics are essentially
those of a classical Newtonian particle.

The pure SG equation! is a nonlinear wave equa-
tion of Lorentz-covariant form:

2 2
Z—tzﬁ -cf %}—;ﬁz+wozsinzp=0. (1)

Here c, and w, are a velocity and frequency char-
acteristic of the particular physical context.'™®
The various solutions of (1) are known exactly.!™®
For instance

¥s¥ (x,8) = 4tan” texp[+(w,/co)y(x —vf)], (2)

with y=(1-v2/c¢2"'/2 are soliton (+) and anti-
soliton (=) solutions traveling with velocity v (|v|
<cg). Linearized perturbations ¢(x,#) about y,’
have been studied extensively, e.g., to establish
linear stability.” They may be written as ¢(x,?)
=f(x)e"*¥!, where f(x) satisfies a one-dimensional
Schrddinger-like eigenvalue equation:

2
—cozgxé—+ wd(1 -2 sech? uc)—:x)f= w?f. (3)

The assumption v =0 made here is completely
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general since a Lorentz transformation to the
soliton rest frame is always possible. Equation
(3) has exactly” one “bound” eigenstate with w2
=0 and

fo(x) =—2-w—gsech&x. (4)
Co Co

The remaining eigenfunctions form a continuum
with w?=ck®+wg and

_ -1/2C0  ikx - Wo Wo
fule) = (225 <k+zctanhcx>. (5)

R 0 0

These continuum solutions resemble those of the
linearized version of (1) (Klein-Gordon equation),
except for a perturbation localized around the
soliton and an asymptotic phase shift.”® The
zero-frequency bound state (4) is of paramount
importance to our discussion and may be viewed
as a Goldstone mode because the soliton breaks
the continuous translational symmetry. Since
folx) =08y 2/x, ¥(x)=92x) +af,(x) corresponds

(in the linear order considered) to a soliton trans- '

lated by a distance —a. Thus f,(x) may be termed
the “translation mode,” and allows us to describe
the soliton motion.® The continuum solutions cor-
respond to small perturbations of the soliton
shape.

The essence of our technique is to recognize
that f,(x) (i=b,k), being eigenfunctions of a self-
adjoint operator, form a complete set. Their
orthogonality and completeness relations are
readily established.” We repeatedly used this
complete set to expand linearized perturbations
about various functions.®

(i) Impurity-soliton intevaction.—Here we con-
sider the Hamiltonian density

¥ex) =A,:% <%%>2+%Coz<§$> 2
+wf(1 —coszp)-)\%g(x)], (6)

i.e., the usual SG density’ plus a term represent-
ing the interaction'® of y with the impurity poten-
tial g(x). The constant A sets the energy scale,
and for simplicity we take g(x) = 0(x —x,) —6(x +x,).
This simple step function form, chosen for ana-
lytic tractability, is not a limitation of our meth-
od. It is expected to exhibit all of the qualitative
features of more realistic impurity potentials. In
the following the coupling constant X is assumed
small.
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We first form the equation of motion for ¢ from

(6):
82(/) azd)

W-—{Eﬁsinzp:a[é(z +20) =0(z-2,)], (7

where T=wyl, 2 =wyx/c,, a=1/(cw,). A soliton
(or antisoliton) given by (2) and initially moving
with velocity v will be modified if « #0. Labeling
this perturbation by ¢(z,7), we assume ¢ <1 and
using (7) form the equation governing it to linear
order. Upon Lorentz transforming to the rest
frame of the unperturbed soliton this becomes
(with B=v/c,)

2¢

A=

=% [6<z +ﬁ'r+~z)—/‘1>—6(z +BT—§Y£>]- (8)

Equation (8) can be solved using the Fourier time
transform

82
—5292+(1 -2sech%)g

olz,w) = (2n)'1/zf_::° d'reiafcp(z,-r)
(w=w/w,y), (9)

and expanding ¢(z,w) in the complete set (4) and

(5):

9(z,0) = 9, (@), (@) + [ drkep(k,@)f «(2)

(k=kcy/w,). (10)

After projection and inverse Fourier transforma-
tion we find ¢,(7) and ¢(x,7). Even for the step
function form of g(z) these are cumbersome ex-
pressions, and here we simply summarize their
physical interpretation.

Since f, is the translation mode, ¢,(7) de-
scribes the “center-of-mass’” motion of the soli-
ton in the presence of the impurity. We find that
as the impurity approaches z =0 (soliton center)
in the rest frame the soliton begins to be affected,
and when the leading edge passes z =0 the soliton
acquires a velocity 8*= a/88 in the negative di-
rection (for a>0) which is retained until the
trailing edge passes z=0. Thus for a>0 (<0) the
soliton slows down (speeds up) in the impurity
region. (Precisely the opposite effects occur for
the antisoliton.) The soliton acquires an asymp-
totic phase shift 6=4az 872 in the lab frame. The
continuum contributions in (10) consist of two
pieces (both proportional to ): one localized in
the impurity region and persisting for all time,
the other occurring only while the soliton is near
the impurity and describing a slight distortion of
the soliton wave form. We have illustrated some
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FIG. 1. A representative soliton-impurity collision
is shown in the initial rest frame of the soliton (a) be~
fore, (b) during, and (c) after the interaction, The pa-
rameter values are @ =1,5, $=0,9, andz,=5. The
“center-of-mass” (CM) position of the soliton suffers a
phase shift (see text). The vertical arrows indicate the
boundaries of the “Lorentz-contracted’ impurity region,

of this behavior in Fig. 1.

Our results show that ¢ diverges as 872, for
-0, so that the linear perturbation theory is in-
valid for low velocities even for @ «<1. This sug-
gests that low-velocity solitons may become
trapped or repelled by the impurity. We have ex-
amined this possibility by considering a soliton
at rest a distance &c,/w, from the impurity cen-
ter (2 =0), and computing from (6) the change
AV(£) in the static soliton energy due to the im-
purity:

AV(§) =4Aw,c,atan™Y(sinhz ,/cosh§). (11)

Note that AV(£=0) is a minimum (maximum) for
a <0 (>0), with opposite conditions for the anti-
soliton. We have also found the classical condi-
tion for binding (@ <0) or reflecting (a >0) a soli-
ton by comparing the initial soliton kinetic energy
with |AV(0)]. Trapping or reflection occurs for
B2<B2=1-[1+%|altan™Y(sinhz,)] "2

If the soliton behaved as a Newtonian particle
(of mass” M =8Aw,c,), it would execute oscilla-
tory motion about £=0 (for & <0, 82<B?) described
by M?8%¢/812=—-8(AV)/8¢. We studied this in two
regimes where the soliton width is (a) small and

(b) large compared with the impurity width.

In case (a) we sought harmonic oscillations (at
least for small B) determined by expanding A V(&)
to quadratic order in &, i.e., &(7) =¢&,sin(Q7) with
©22=%|a|tanhz,/coshz,. In case (b) we anticipated
that the finite soliton extent would result in dis-
tinctly anharmonic oscillations. Indeed expanding
AV(£) to quartic order and assuming Newtonian
motion led to a nonlinear oscillator equation with
Jacobi elliptic functions as oscillatory solutions,*
which have the expected character.

We studied the validity of the Newtonian Ansatz
by considering ¢ =9 2(z —&(1)) + ¢(z,7). The first
term describes a soliton oscillating about 2 =0
and ¢ is the difference between this Ansatz and
the exact solution ¢ to (7). Anticipating small ¢
we again linearized and expanded in the basis
functions (4) and (5). For both the limits (a) and
(b) above the amplitudes ¢,(7), ¢(k,7) were found
to be small, as required for consistency.

(i) External fields and damping.—Consider the
equation of motion

92 82
29 -coz—éx—dé +wesing=E -1

9
_a—t'y
where 78y/8t is a viscous term and E is a con-
stant driving force. For small E, we proceed in
the same spirit as for (i), assuming a solution to
(12) of the form y(z,7) =9,°(z —B71) + ¢(z,7), linear-
izing in ¢ and transforming to a coordinate frame
moving with velocity v. The perturbation ¢ sat-
isfies

az(P 32(p 2 @
7 T 5T +(1-2sech%) g+y P—a-;
9
_3yr£=x+2ﬁyl" sechz, (13)

with T =n/w,, x=E/w,?. We again expand ¢(z,7)
in the complete set (4) and (5) and project out the
amplitudes ¢,(7) and ¢(k,7) [cf. (10)].

The solutions will be presented in detail else-
where. Here we note only that ¢,(7) satisfies®

(14)

Assuming [8¢,/87];.,=0, i.e., a soliton initially
at rest in the frame moving with velocity v, and
perturbations turned on at 7=0, we find from (14)
that ¢, (1) =(B+ 47Xy T Y[ =y 1" Y1 - ?T7) ].
Since ¢,(7) is the translation mode amplitude we
see that the soliton achieves a terminal velocity
(-z direction) 7=+ 7xy 'I""%. If x =0 then BT
=B and the soliton comes to rest in the lab frame.®
Thus the soliton behaves precisely as a Newton-

2, /T2 +yT 8¢, /8T =Py T +imy.
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ian particle moving in a force field and viscous
medium. Indeed (14) is just Newton’s second law
for the position (-¢,) of such a particle. Except
for some initial transient time dependence, the
continuum contributions to ¢(z,7), describing
modifications of the soliton shape, are localized
about the soliton and are time independent.

In conclusion we have illustrated a simple per-
turbative method for examing the influence of ex-
ternal perturbations on soliton' or solitary-wave
solutions of nonlinear wave equations. In trans-
lationally invariant cases we find that the solitons
behave essentially as classical’® extended parti-
cles. This conclusion includes the “¢*” prob-
lem,? although there the analog of (3) has an extra
bound state to which external perturbations can
couple. These results may be applied, for ex-
ample, to Bloch walls in impure materials, mag-
netic solitons'” in *He, and “charged-phase soli-
tons’® in one-dimensional charge-density-wave
condensates.

Note Added:—We have recently become aware
of numerical studies of the damping problem
carried out by Nakajima and co-workers.’® Our
results agree with theirs for small values of the
driving force.
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