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We show that recent short-time-scale measurements of the specific heat of amorphous
dielectrics are not inconsistent with the predictions of the tunneling model if the associat-
ed heat diffusion problem is properly treated. This requires taking into account the ki-
netics of energy transfer between the phonons and the tunneling modes.

In a recent Letter Goubau and Tait' presented
short-time-scale (t - 100 @sec) measurements of

the specific heat of some amorphous dielectrics,
which agree with the earlier long-time results '
within the experimental uncertainty. They con-
cluded that these results contradict the tunneling
model"' in that the latter would require the long-
time specific heat to exceed the short-time val-
ue' by a factor of 3 to 4. The tunneling model as-
sumes the existence of localized two-level struc-
tural states in amorphous dielectrics and was in-
troduced previously to interpret the thermal
properties of these systems. +'

The purpose of the present Comment is twofold.
First we show that the above measurements are
indeed consistent with the tunneling model pro-
vided that the heat diffusion problem is treated
correctly, taking into account the kinetics of the

energy transfer between the phonons which carry
the heat and the localized two-level tunneling sys-
tems. Secondly, for an ideal situation of uniform
spatial heating of the sample, we derive explicit-
ly the intrinsic time dependence of the specific
heat in the dominant-phonon approximation and

discuss some limiting cases. By "intrinsic" we
refer to the time dependence arising entirely
from the delayed transfer of energy~ ' from the
phonons to the two-level systems in the absence
of heat diffusion.

Re consider the experimental situation where
a slab of unit cross-sectional area confined to
the region 0" &x &L is heated by a heat pulse at
x =0, at t =0. The temperature gradient BT(x, t)/
ex is maintained zero' at x =0 and x =L for all

t & 0. The heat transport is governed by

BQ(x, t)/Bt = xe2~T(x, t)/Bx',

where BQ(x, t)/Bt is the rate of accumulation of
heat per unit volume and ~ is the thermal conduc-
tivity. This heat is taken up instantaneously by
the phonons which then slowly transfer part of it
to the local tunneling states. %e describe the
kinetics of this heat transfer in the dominant-pho-
non approximation in which the thermal phonons
are replaced by an effective number, N~, of pho-
non modes per unit volume, having energy E~=E
= 3k~ T. The latter are assumed to interact only
with an effective number N, of pairs of resonant
tunneling states per unit volume, of energy split-
ting E,=E. We denot—e by n~ (x, t) the phonon oc-
cupation number density per mode and assume
that the phonon subsystem is always locally in
thermal equilibrium. Thus the local (phonon)
temperature is defined and a change hn~ (x, t) cor-
responds to a change AT in the measurable tem-
perature given by (P = 1/ks T )

4T sinh'(-,'PE)

The time evolution of n~ (x, t) is determined by

Bn, a BQ(x t) Bn,
Bt pc~(T) Bt Bt

where the first term gives the change in the pho-
non occupation due to the inflow of heat BQ(x, t)/
Bt into an element of thickness ~ and (Bn~/Bt),
represents the rate of change of the phonon oc-
cupation due to resonant interaction with the lo-
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calized tunneling levels and is given by

(Sn,/St), = ~,-'[(n, + 1)N, —n, N ]. (4)

to lowest order in hT „
eie n'.,Ze „,()iZ)(ee, ) (6)

In the above equations p denotes the mass den-
sity; c~(T) the phonon specific heat per unit mass
[c&(T) =K~ p 'Ea in the dominant-phonon approxi-
mation]; and N, the occupation number densities
of the upper and lower levels of an isolated tun-
neling pair [N+ =N exp(-P, E), N++N =1, P,
= (gBT,) ', T, =T +b,T,] of splitting E. The re-
location time v~ is given by'

1 n M'E dN,
Tp ~~@Deb d

where c,(T) is the specific heat per unit mass as-
sociated with the tunneling states. Equations (3),
(4), and (6) form a closed system from which the
occupation numbers n~(x, t) and N, (x, t) may be ob-
tained by linearizing with respect to the changes
b.n~ and hN, [bN, (x, 0) = 0] of these quantities pro-
duced by the source term eQ(x, t)/et. The explic-
it solution for the Laplace transform bn~ (x, s)
of b,n~(x, t) is

Sn, (x, s)
where vDeb is the sound velocity and M is related
to' the deformation potential B and to the off-
diagonal matrix element 6, which couples the un-
perturbed states of a tunneling pair, through ~
=Bt) /E Since t.he tunneling modes do not con-
duct heat their population changes only as a re-
sult of their local coupling to the phonons. From
energy conservation for this process we obtain,

where [c(T) = c~ (T) + c, (T)]

1 N Ea, t3E 1

pc, (T) 2

(9)

According «Eqs. (4) and (6), 7 ' represents the relaxation rate of the two-level systems. At this
stage it may be remarked that 7 ' has a distribution' and eventually physical quantities must be aver-
aged with respect to this distribution. Combining Eqs. (1), (2), and (I) we obtain the following equa-
tion for AT (x, s):

c1,(T) ~s S'AT (x, s) pc, (T)
( 0)

pc, (T)
( (10)

This equation, which is central to our treatment, differs from the usual heat-diffusion equation in that
it incorporates explicitly the effect of the transfer of energy from the heat-carrying phonons to the two-
level tunneling states which do not transport heat. In the time domain Eq. (10) represents an integro-
differential equation for b,T(x, t) which may be solved after converting it into a differential equation,
whose general solution is then required to satisfy the original integral equation. Using the above bound-
ary conditions and the steady-state condition

limaT(x, t) =Qo/pLc(T) = AT
t~~

where Q, is the total amount of heat supplied impulsively at time t = 0 at x =0, we arrive at the final re-
sult (7I =pc, (T)/~)

AT(x, t) c(T)= 1+ —1)exp (—e,1)
cu

+2 Q cos exp(- b„t/2)[ f„exp(a„t/2) + (1 —f„)exp(- a„t/2)],
cp T ))=1

where

712n2
b„=s,+ (12)

4 PE ~'n' "'
a„= b„' -—coth 2-2 L2
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f„=(b„' -a„')(2s,+a„—b„)[4a„(b„—s,)(b„+a„)j '.
One may easily verify that at f =0, AT(x, 0) van-
ishes inside the sample except for a 5-function
pulse of strength AT '=Q, /pLc~(T) atx=0, as
required since the initial heat Q, is taken up by
the phonons. ' The temperature profile given by
Eq. (11) is plotted in Fig. 1 for fused silica and
polymethyl methacrylate (PMMA), for various
values of 0 = nx/I. taking L = 1 mm. ' The effective
number of phonon modes N~ is defined by equat-
ing the phonon specific heat in the dominant-pho-
non approximation to the Debye expression. ' The
quantity M' is estimated from the measured ther-
mal conductivity, ' using the Debye model expres-
sion for e and the above form for the phonon re-
laxation rate' v~ 'tanh( —,'PE). Finally, the values
of the remaining parameters are taken from Ta-
ble I of Ref. 3.

The curve k =m corresponds to the experimen-
tal situation and it is seen that our treatment in-
volving no free parameter yields excellent agree-
ment with experiment' for fused silica and qual-
itative agreement for PMMA, without using the
fact that v ' has a distribution' and replacing this
quantity by the average value determined above.
The overshoot above the equilibrium temperature
ET at points x close to the origin is a general
feature related to the sudden nature of the heat-
ing process at x =0 at t =0.

The drastic effects associated with the exis-
tence of the two-level systems are best seen by

!
comparing the results of Fig. 1 with the temper-

ature profiles AT'(x, t)/AT„' which would be ex-
pected if the phonons were present alone in the
system, which corresponds to the limit 7- ~,
c,(T)-0, and' ~-z,&„,& in Eq. (11). In the case
of SiO„ for example, one finds that at T = 0.16 K
(0.88 K) the time f required for AT(L, t) to reach
half its maximum height AT„changes from 7& 1
psec in the absence of tunneling states to t = 70
psec (38 psec) in the presence of these states. In
the present situation involving mobile phonons
coupled to tunneling states, the temperature pro-
files AT(x, t) have a more direct meaning than the
time-dependent specific heat itself. ' The effect
of the tunneling states on AT(x, t) in Eq. (11) is
controlled by the two essentially independent pa-
rameters 7 and n=c, (T)/e~(T), from which one
could envisage different limiting situations. In
particular, the estimate of 7 for SiO, as indicat-
ed above, using Eq. (8), yields v=2. 54 psec at T
= 0.16 K and v = 0.022 p,sec at T = 0.88 K. This
shows that in the range of the experimental mea-
surement times (see Fig. 1) the two-level sys-
tems are essentially in equilibrium with the pho-
nons and no intrinsic time dependence of AT(L, t)
can result. This explains why the short- and
long-time-scale specific-heat measurements
yield the same results, as noted in Ref. 1.

We now consider the intrinsic time dependence
of the specific heat in an ideal case where a heat-
ing pulse dQ/di of height Q,/At and width At is
applied uniformly to the entire sample. Our pre-
vious equations (3)-(9) remain valid for this case
with the difference that the spatial dependence is
now suppressed. For this case, the explicit form
of An~(t) obtained from (7) with An~(0) = 0 is

An~(t) = ' ' exp(A ts, ) —1 exp(- ts, ) +—coth, t )At.
aQ c,(T) — — At PE

pepAfsi c T 7
(14)

From Eq. (14) we obtain the change in phonon
temperature using Eq. (2) and hence we find the
explicit form of the specific heat c(t,T) = Q,/AT(t),
t) 4t. In general, however, we must average the
physical quantity Am~(t) with respect to the distri-
bution of v '. We recall that v '~4' and that the
splitting of the tunneling states is given by' Z = (e'
+A')' ', where A =A, e . Here + 2e are the un-
perturbed ground-state energies in the two mini-
ma of the asymmetrical potential well and 4 is
the resonance integral, 40 being typically the
zero-point energy in the potential minima. Both
& and ~4 are random quantities which we shall as-
sume to be uncorrelated. ' In order to get a line-

ar specific heat it is sufficient to have a smooth
density of tunneling states which is nonvanishing
down to the lowest energies of interest. ' ' This
can be realized' by assuming & and A. to have the
following probability density distributions: p~(A. )
=A. ' for 0&A. &A, and p, (e) =e ' for 0««
From these distributions we find the joint distri-
bution P(E, ~) of E and ~ =w ' and the result coin-
cides with that given by Jackie' except that there
are well-defined lower and upper bounds to the al-
lowed values of ~, which ensures that P(E, ~) is
finite for all ~: ~ ( & ~„, where ~~ is the max-
imum value of ~ obtained by putting 4 =E in the
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which has been used recently, ' does not follow as
such from the tunneling model. Using the data of
Ref. 3 for SiO, and the typical value 6, = 10 ' eV,
we find that for X„s9, c(t = 5 sec, T) does not ex-
ceed c(t =100 psec, T) by more than 7% in the
range 0.2 K&T & 1.5 K. On the other hand, for ~
~ 10 the long-time specific heat appreciably ex-
ceeds the short-time value at low T and increas-
es rapidly with X .
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FIG. 1. Temperature profile as a function of time for
various positions x in a slab of thickness L subjected
to a heat pulse at x=0, at t =0. The different curves
correspond to different values of 0 = wx/L and are nor-
malized to unity at the steady-state value QT . The
dots correspond to measured values of ~T (Bef.1).

expression of v~ in Eq. (5), while ~ is the min-
imum value of & which corresponds to ~ =h, e
In addition, the constant factor P in Jackie's ex-
pression is replaced by P = (A. s ) ~. Next we av-
erage Eq. (14) with the distribution P(E, co) as-
suming v» 4t, and substitute the resulting value
in Eq. (2). The result for the specific heat c(t,T)
at time t is then

(15)

where t, =c~(T)[&u„c(T)coth(2PE)] ', t, =(&us/co )t„
and Ei(x) is the exponential integral. First we
note that for t - ~, c(t,T) reduces to the steady-
state value c(T), as expected. Equation (15) shows
that the expression c(t, T) ~ T ln(4tu„) (t » ~s '),
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solutions of our Eq. (10) to the experimental data. Since
the tunneling systems are distributed statically in
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