Evidence for Radiative Recombination in GaAs_{1-x} P_x : N (0.28 $\leq x \leq$ 0.45) Involving an Isolated Nitrogen Impurity State Associated with the Γ_1 Minimum*

D. J. Wolford and B. G. Streetman

Coordinated Science Laboratory and Department of Electrical Engineering, University of Illinois, Urbana, Illinois 61801

and

William Y. Hsu and John D. Dow

Department of Physics and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801

and

R. J. Nelson and N. Holonyak, Jr.

Department of Electrical Engineering and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801

(Received 8 March 1976)

Photoluminescence data for $GaAs_{1-x}P_x$ alloys implanted with nitrogen are reported for $0.28 \lesssim x \lesssim 1.0$ and for N concentrations from $10^{16} \lesssim N_N \lesssim 10^{20}$ cm⁻³. Evidence is presented of a new excited shallow bound state (N_{Γ}) of the isolated N impurity, coexisting with the tightly bound ground state (N_X) of this center. The two levels are associated primarily with nonequivalent conduction-band minima.

Isolated nitrogen impurities in GaP and $GaAs_{1-x}P_x$ produce an electronic level associated with the X_1 conduction-band minima. Luminescence from radiative decay of excitons bound to this level is termed A-line emission¹ in GaP and recently N_x emission in $GaAs_{1-x}P_x$.²⁻⁴ Previously, there was believed to be only one level produced by the isolated impurity in $GaAs_{1-x}P_x$.⁵⁻¹¹ In this paper, however, we present evidence of a second bound level and its emission line N_{Γ} . This new level, unlike N_x , is associated with the Γ_1 minimum and is observable over only a limited range of ternary alloy compositions (0.28 $\leq x \leq$ 0.45).

Data presented here are obtained from extensive photoluminescence (PL) studies of N-implanted $GaAs_{1-x}P_x$ over the alloy composition range $0.28 \leq x \leq 1.0$, and over a wide range of N concentrations $(10^{16} \lesssim N_{\rm N} \lesssim 10^{20} \text{ cm}^{-3})$. Recent progress in the annealing of N-implanted GaP $^{\rm 3}$ and $GaAs_{1-x}P_x$, $P_{x,1}^{2,3,12-14}$ resulting in material quality comparable with that of conventionally doped crystals, has made this study possible. The PL measurements are performed at 4.2 K on vaporphase exitaxial *n*-type crystals of bulk dimensions having low donor concentration ($N_D < 10^{17} \text{ cm}^{-3}$). Spectral changes due to the N doping are clearly identifiable and are easily distinguished from radiation damage 12^{-14} and other doping effects. A portion of the N-implanted region on each sample is removed for direct comparison with N-free material. Discussion of sample implantation,

passivation and annealing, and PL measurements are presented elsewhere.^{2,3,12-14} The N concentrations referred to below are theoretical peak concentrations for single ¹⁴N⁺ implantations at 200 keV.¹²

Photoluminescence spectra from $GaAs_{1-r}P_r$ (x = 0.34) are shown in Fig. 1. The bottom spectrum, labeled Γ (composed of free exciton, bandto-band, and shallow donor-related emission), is from annealed N-free material. With addition of the N impurity to $N_{\rm N} \sim 5 \times 10^{16}$ cm⁻³, the N_r and N_x transitions are observed. Appearance of N_X at this low concentration agrees with studies in all N-implanted GaAs_{1-x} P_x (x ≥ 0.28), where N_x is systematically observed for $N_{\rm N} \sim 10^{16}$ cm⁻³. At this N concentration. A-line emission is observed in GaP, but NN-pair emission is absent.^{1,3} As indicated by the scale multipliers, the $N_{\,\Gamma}$ intensity grows with N concentration and then decreases for $N_N \gtrsim 5 \times 10^{17}$ cm⁻³, while N_x intensity increases and dominates the spectrum for $N_{\rm N} \gtrsim 5 \times 10^{18}$ cm⁻³. For the excitation power density used here (2.5 $\times 10^3$ W cm⁻² at 4880 Å) the N_T transition is difficult to observe for high N doping.

The crystal-composition dependences of the N_Γ and N_X states in N-implanted material are displayed in Fig. 2. The Γ_1 and X_1 band-edge dependences follow those given by Onton and Foster¹⁵ at 6 K. Each N luminescence data point represents many individual observations at each indicated alloy composition for $10^{16} \leq N_{\rm N} \leq 10^{20}$ cm⁻³. Emission from N_Γ follows the Γ_1 band edge over

FIG. 1. Photoluminescence spectra (4.2 K) of GaAs_{1-x} - P_x (x = 0.34) N-implanted to the indicated peak concentration and annealed for 30 min at 950°C. Dashed portions of the spectra approximate the N_X band shape.

a wide composition range $(0.28 \le x \le 0.43)$ with $E_{\Gamma} - E_{N_{\Gamma}} = 19 \pm 2$ meV. For $x \ge 0.43$ the N_Γ state departs from Γ_1 and evolves into the state labeled N_{Γ-x}. This level follows approximately the X_1 dependence from $x \ge 0.46$ to its disappearance at $x \ge 0.53$.

Luminescence peaks corresponding to N_{Γ} (or $N_{\Gamma-x}$) have been variously reported in the spectra of $GaAs_{1-x}P_x$ N-doped to low concentrations during growth.⁷⁻¹⁰ However, in the absence of N concentration variability now provided by ion implantation, the interpretation of these spectra was unclear. For $x \ge 0.40$, N_{Γ} or N_{Γ -x} emission was attributed to A-line recombination⁸⁻¹⁰ at the isolated N center, associated with the X_1 conduction-band minima as in GaP. This was believed to be the only bound state of the isolated center and was assumed to become degenerate with the Γ_1 continuum for $x \ge 0.40$.⁸⁻¹¹ In x = 0.37 material N_{Γ} was reported as NN_3 -pair emission, ¹⁶ in analogy with GaP.¹ The remaining emission bands associated with N_x were attributed to NN-pair recombination.^{8°10,16} Recent implantation studies reveal no evidence of NN-pair participation for

FIG. 2. GaAs_{1-x}P_x: N alloy composition diagram (4.2 K) resulting from N-implantation data.

 $x \le 0.90$ in GaAs_{1-x} P_x.³ The N_x emission peak for $0.28 \le x < 1.0$ is due to bound-exciton recombination at the ground state of the isolated N center associated with the X_1 conduction-band minima.²⁻⁴ Major peaks below N_x result from optical phonon sidebands of this no-phonon transition.³

The present data suggest that N_{Γ} (and $N_{\Gamma-x}$) emission also results from bound-exciton recombination at the isolated center. However, the level N_{Γ} appears as a shallow excited state of the impurity, associated instead with the Γ_1 minimum. Moreover, evolution of N_{Γ} into the $N_{\Gamma-x}$ state results from hybridization of the level as N_{Γ} approaches X_1 . In the PL spectra this appears as a broadening and deepening of the level compared to N_{Γ} of Fig. 1.

Although the focus of the present discussion is the new N_{Γ} state, the remaining data appearing in Fig. 2 are presented for completeness. Donor emission (D_0) due to the background S, Se, or Te dopant is shown for indirect-band-gap compositions. Data from optical absorption measurements on N-doped GaAs_{1-x} P_x are also presented in Fig. 2, where the square symbols represent approximate absorption peak positions and the horizontal bars indicate the onset of the N-induced absorption. Compared to the N_x-related emission peaks, the absorption data are indicative of a center strongly coupled to the lattice, with a resultant Stokes shift in absorption.^{3r4,17,18} The additional high-energy absorption peak at x = 0.49 apparently results from direct absorption on the N_{T-x} level, observable weakly in emission at this composition.

An oversimplified but analytic description of the N_Γ and N_X levels is afforded by neglecting the electron-hole (~5–10 meV) and electron-electron interactions, assuming the hole is free, and describing the electron-N interaction by a local potential $V(r) = -V_0 \operatorname{sech}^2(r/a)$. The electron band structure is assumed to be isotropic and parabolic, near both Γ_1 and X_1 , with effective masses $m_{\Gamma} = 0.063 + 0.052x^{-19}$ and $m_X = 0.35 + 0.015x^{-20}$ Coupling among the three X_1 minima and valleyorbit splitting are neglected. Then, the binding energies of electrons in the states N_Γ and N_X are (with $\nu = \Gamma$ or X)

$$R_{\nu} = \frac{\hbar^2}{8m_{\nu}a^2} \left[\left(1 + \frac{8m_{\nu}V_0a^2}{\hbar^2} \right)^{1/2} - 3 \right]^2.$$
 (1)

Here we have assumed that the effective-mass approximation is valid separately at the Γ_1 and X_1 minima; we have used a formalism due to Bassani,²¹ and we have neglected intervalley coupling. The quantities $V_0(x) = 1.09 - 1.7x$ eV and a(x) = 3+40x Å are determined by fitting the binding energies for two compositions near $x \simeq 0.35$. The resulting energies are depicted as heavy lines in Fig. 2, and considering the simplicity of the model, are in remarkable agreement with the data. Note that since this model neglects Γ_1 - X_1 coupling, it is incapable of quantitatively describing the spectra near and beyond the direct-indirect crossover ($x \ge 0.46$). Nevertheless, it does reproduce the nearly constant binding energy of N_{Γ} and the approximately linear energy variation of N_x throughout the range of direct-gap alloys.

It is noteworthy that a one-band, one-site Koster-Slater model used in the past produces only one bound state^{6,11,21} and cannot describe the additional N_{Γ} level; moreover, the Koster-Slater model cannot explain the linear dependence of the N_x binding energy on composition, unless the strength of the potential is allowed to vary with x.⁶ The present model is more satisfactory in that the potential is of nonzero radius and can support two electron bound states. Presumably the potential simulates a strain field surrounding the N impurity.²² In the simplified effective-mass approximation used here, one state (N_x) has a momentum-space wave function peaked near X_1 with heavy-mass components which restrict the bound electron to the vicinity of the N center in real space. The other state (N_{Γ}) is comprised

largely of light-mass Γ_1 components which allow the bound electron to be less localized spatially. Qualitatively, the weakly bound, delocalized N_Γ state should couple only weakly to the lattice, whereas the confined N_X state should interact strongly with the lattice. As expected, the spectra reveal prominent phonon sidebands of the N_X line (Fig. 2), but no distinguishable phonon structure for the weak-coupling N_Γ line. Finally, the model predicts that the N_Γ state should enter the Γ_1 continuum at x = 0.21, in good agreement with the observations.

Note added.—The model used to account for the data of this work is basically phenomenological and does not apply beyond the restricted range 0.28 < x < 0.45. Recently an extensive theory (G. G. Kleiman, unpublished) has been developed which is not restricted in range and which includes interactions between N_{Γ}, N_X, and N (the short-range N trap).

We are grateful to M. G. Craford, W. O. Groves, and D. L. Keune (Monsanto Company, St. Louis) for generously providing the wide variety of crystals on which these studies depend.

*This work was supported by the Joint Services Electronics Program (U. S. Army, U. S. Navy, U. S. Air Force) under Contract No. DAAB-07-72-C-0259, by Monsanto Co., and by the National Science Foundation under Grants No. DMR-73-07661, No. DMR-72-03026, and No. DMR-72-03045-A01.

¹D. G. Thomas and J. J. Hopfield, Phys. Rev. <u>150</u>, 680 (1966).

²D. J. Wolford, B. G. Streetman, R. J. Nelson, and N. Holonyak, Jr., Appl. Phys. Lett., <u>28</u>, 711 (1976).

 3 D. J. Wolford, B. G. Streetman, R. J. Nelson, and N. Holonyak, Jr., to be published.

⁴R. J. Nelson, N. Holonyak, Jr., J. J. Coleman, D. Lazarus, W. O. Groves, D. L. Keune, M. G. Craford, D. J. Wolford, and B. G. Streetman, to be published.

⁵P. J. Dean and R. A. Faulkner, Appl. Phys. Lett. <u>14</u>, 210 (1969).

⁶D. R. Scifres, N. Holonyak, Jr., C. B. Duke, G. G. Kleiman, A. B. Kunz, M. G. Craford, W. O. Groves,

and A. H. Herzog, Phys. Rev. Lett. 27, 191 (1971).

⁷N. Holonyak, Jr., D. R. Scifres, R. D. Dupuis, M. G. Craford, W. O. Groves, and A. H. Herzog, Appl. Phys. Lett. <u>19</u>, 254 (1971).

⁸N. Holonyak, Jr., R. D. Dupuis, H. M. Macksey, M. G. Craford, and W. O. Groves, J. Appl. Phys. <u>43</u>, 4148 (1972).

⁹M. G. Craford, R. W. Shaw, A. H. Herzog, and W. O. Groves, J. Appl. Phys. <u>43</u>, 4075 (1972).

¹⁰See, for example, J. J. Coleman, N. Holonyak, Jr., M. J. Ludowise, R. J. Nelson, P. D. Wright, W. O. Groves, D. L. Keune, and M. G. Craford, J. Appl. Phys. 46, 4835 (1975), and references therein.

¹¹See, for example, M. Altarelli, Phys. Rev. B <u>11</u>, 5031 (1975), and references therein.

¹²B. G. Streetman, R. E. Anderson, and D. J. Wolford, J. Appl. Phys. <u>45</u>, 974 (1974).

¹³D. J. Wolford, thesis, University of Illinois Coordinated Science Laboratory Report No. R-636, 1973 (unpublished) (available from National Technical Information Service, Springfield, Va., Report No. AD774319).

¹⁴R. E. Anderson, thesis, University of Illinois Coordinated Science Laboratory Report No. R-660, 1974 (unpublished) (available from National Technical Information Service, Springfield, Va., Report No. ADA000906).

¹⁵A. Onton and L. M. Foster, J. Appl. Phys. 43, 5084

(1972).

¹⁶R. D. Dupuis, N. Holonyak, Jr., M. G. Craford,

D. Finn, and W. O. Groves, Solid State Commun. <u>12</u>, 489 (1973).

¹⁷J. M. Dishman and M. DiDomenico, Jr., Phys. Rev. B 4, 2621 (1971).

¹⁸R. J. Nelson and N. Holonyak, Jr., to be published.
¹⁹B. W. Hakki, J. Appl. Phys. 42, 4981 (1971).

²⁰R. J. Stirn, in *Semiconductors and Semimetals 8*, edited by R. K. Willardson and A. C. Beer (Academic, New York, 1972), p. 49.

²¹See, for example, F. Bassani, G. Iadonisi, and

B. Preziosi, Rep. Prog. Phys. <u>37</u>, 1099 (1974), and references therein.

²²J. W. Allen, J. Phys. C <u>4</u>, 1936 (1971).

COMMENTS

Comment on "Resonance Raman Scattering and Collision-Induced Redistribution Scattering in I₂"

P. A. Hackett

Division of Chemistry, National Research Council of Canada, Ottawa, K1AOR6, Canada (Received 21 July 1975)

The form of resonant scattering spectra and their time decays are restated. An analysis of recent experimental results on molecular iodine shows that the existence of elastic collisional transfer processes cannot be positively proved.

In a recent Letter Rousseau, Patterson, and Williams (RPW) claim to present the "first experimental observation" of collisionally induced redistribution scattering.¹ This has been defined for resonance scattering of monochromatic light in gases² as the process by which elastic collisions between atoms redistribute the scattered radiation from the excitation frequency (ν_0) over the absorption profile of the atomic resonance centered at $\nu_0 - \Delta \nu$. The effect of collisions on the form of resonance scattering spectra has long been recognized. In an early review³ of the subject it was noted that in the limit of Dopplerbroadened absorption lines the scattered light observed in a direction parallel to the direction of the exciting radiation has a spectral distribution which is closely related to that of the exciting radiation, e.g., if the exciting radiation is self-reversed, the emission line is also self-reversed.⁴ However, when the absorption linewidth is dominated by collisional perturbations the emission line has exactly the same shape as the absorption line, whatever the excitation frequency or profile, and independent of the angle of viewing.⁵ It was concluded that "the Rayleigh scattering persists only in those parts of the spectrum where the absorption caused by Doppler broadening or collision broadening of the absorption line practically vanishes."³ These observations, together with the effect of *elastic* collisions, were fully included in the theory developed by Hüber to explain line shapes observed during resonant scattering of monochromatic light in gases.² There have been no experiments which demonstrate the elastic redistribution effect. Such an effect, and its dependence on $\Delta \nu$, may be of prime importance in theories describing the Raman effect.

It is the purpose of this paper to point out that the experiments performed by RPW¹ do not provide evidence for elastic collisional redistribu-