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The coefficients in the Callan-Symanzik equations for a three-dimensional, continuous
spin Ising model with 3xL exp(-As +Bs ) spin-weight factor are expanded in the dimen-
sionless, renormalized coupling constant. These series are summed by the Pade-Borei
method to yield the critical. indices p =1.241+ 0,002, q=0.02+ 0.02, & =0.63+ 0.01, and &g

=0.49+ 0.01.

The renormalization-group approach to critical
phenomena introduced by Wilson' and substantial-
ly elaborated by others' ' has contributed a great
deal of physical understanding. It has contribut-
ed calculations, via the &-expansion approach of
Wilson and Fisher' and of Br4zin and co-work-
ers,"' of fair accuracy. Somewhat improved ac-
curacy is obtained by Colot, Loodts, and Brout."
So far, however, the accuracy of the calculations
is substantially inferior to that of the high-tem-
perature-series approach, " and inadequate for
detailed comparison with experiments. Here we
will show that by the introduction of appropriate
and sufficiently powerful series summation tech-
niques, the approach advocated by Parisi"" can
yield results of accuracy comparable to high-
temperature-series results. Specifically we will
treat the three-dimensional, continuous spin Is-
ing model via the renormalized, perturbation ex-
pansion of the Callan"-Symsnzik" equation. We
have been able to compute P to sixth order and
the other coefficients to fifth order. This treat-
ment involves the unproven assumption that the
right-hand side of the Callan-Symanzik equation
is asymptotically negligible. It is known that this
result is true order-by-order in perturbation the-

ory. Our results for this treatment of this mod-
el are

v* = 1.423 + 0.01,

ii, =1/v —2+re = —0.3843+0.003,

y = 1.2410 + 0.002,

e =0.78+ 0.01,

q = 0.021 + 0.02,

v = 0.627 + 0.01,
co v = 0.49 + 0.01 .

(2)

The results quoted in (1) and (2) are all in
agreement with the best high-temperature-series
results"" for the spin-s Ising model except for

where v* is the fixed-point value of the renormal-
ized coupling constant; v is the exponent for the
correlation length, $=(T -T,) "; rt is the low-
frequency, magnetic susceptibility index, X o-h" '
at T = T,; and y is the static magnetic susceptibil-
ity index, y ~(T —T,) &. Finally, u is Wegner's"
correction to scaling index. Since scaling holds
explicitly for this theory one may compute from
Eq. (1) by the usual relations
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y which is significantly lower than the accepted value of

y = 1.250+ 0.003 .

We do not know whether this difference is intrinsic, the result of bias in the numerical estimates, or
the result of the approximation made in deriving the Callan-Symanzik equation.

In order to study the model described by the partition function

Z=f'„"" f(II';-)exp[ Z ( «;~-,„- A-o +B~ )],
1 at tice

where ~ ranges over half the set of nearest-neighbor lattice sites, in terms of the above-mentioned
techniques, we find it convenient to recast Eq. (4) in a more suggestive notation. Let us make the re-
placements

i=Ax, Ax=1/A; o; =ps-, , (es)'=QT(s& —s&+s)'/(&x)'.

In this notation Eq. (4) becomes

Z= f'" "fD(ds, &)exp( z'[ —g Z, (ss)'+m's'](bx) — Q [g(Z, /4!)s'+ '6m—'s'](~x) ),
1 at tice 1at tice

where

(6)

sr&"(p, -p;m, g) =I
sp p2= o

r&'&(o, o o o m g)=g

(6)

we obtain a finite limit as the scale factor A -.
The functions I' " are the vertex functions, or
one-particle irreducible Green's functions. In
the resulting theory the spin-spin correlation de-
cays at large distances like

exp(- m ) x [ ) = exp(- [ i [m /A ) . (9)

Since we are concerned with the critical point,
we want the correlation length, which Eq. (9) im-
plies is A/m, to tend to infinity.

Following Brbzin, Le Guillou, and Zinn-Jus-
tin, ' we introduce the dimensionless "coupling
constant, "u, by

g =m'-"u .

Then they' showed that the Callan-Symanzik equa-

Zo =Kg'A 2, Z, = (4!)Af'A"/g,

m'+6m = —2A'(d+B/K)Zo,

with d the space dimension of the hypercubical
lattice on which the model is specified. We have,
by this substitution, introduced three arbitrary
parameters which we may select to suit our pur-
poses. The form (6) is a lattice version of Eu-
clidean boson, &@4 field theory. Renormalization
theory for this situation assures us that if we de-
fine the renormalization constants Z„Z„and
m' by the conditions

m +p(u) ———Nq(u) r&(x)

gI (&) 0 (10)

(Bln[uz, (u)iz,*(u)] '
~Q

Sln Zg (u )
~Q

(12)

In addition it is convenient to define an additional

FlG. 1 Expected behavior of P(u).

is satisfied. The right-hand side is asymptotical-
ly, as A/m ~, smaller by a factor (m/A)', up
to powers of ln(A/m), order by order in pertur-
bation theory and is assumed not to affect the
critical behavior in what follows. Hubbard" has
discussed this assumption.

Analysis of the Callan-Symanzik equation leads
to the following prescription for computing the
critical indices of the model (4). First P(u) is
expected to behave as sketched in Fig. 1. The
critical-point behavior is determined by the be-
havior of the coefficients at the zero u* of P(u).
The coefficients in (10) are defined by
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renormalization constant associated with the s-, 2

vertex
kp

kp

1=~.(u)1'""(P;e, -e;m, a)l&=,=., (13)

where F~ '" has M distinct s' vertices and N
distinct s vertices. Associated with Z, (u) is the
additional function

k(
Q

FIG. 2. Single-loop insertions with two, three, and
four external momenta.

rt, (u) = p(u) (14)

The critical indices are given by

p(u*) = 0,
1/v —2+rt =r!,(u*), q =q(u*),
y-' =I+q, (u*)/[2 —ri(u*)],

(u+ = p'(u+) .

(15)

The expansion of P, q, and q, in powers of u is
computable in terms of the renormalized pertur-
bation theory. Parisi" and Brdzin, Le Guillou,

and Zinn-Justin' have computed these series for
general dimension and number of components
thru orders three, two, and two, respectively
(Parisi's work is unfortunately marred by mis-
prints). We have extended these results by three
additional orders for d = 3 and the single-compo-
nent system described in (4). The extension to
multicomponent systems is not hard.

A technical point which greatly facilitates these
higher-order calculations is that the necessary
single-loop graphs can be evaluated analytically.
For the graphs pictured in Fig. 2 we obtain

P = 7r
' f d' K((1 + K') [1 + (K+ k)']} ' = (2/k)tan '(k/2),

T =m ' f d'K((1 +K) [1+(K+k,)'][I+(K+k, +k,)']} '=& 'tan '(b, /C),
where

1+-k ' 1+gk,'

I+ak2, C =4+zk +—k +—k

(16)

(17)

(18)

(20)

Q = —,f dBK((1+K ) [1+(K+k,)2][1+(K+k,+k )~][1+(K+k,+k2+k3)2]} '= g tan ' —, (19)

where the F~ and D a,re 4& 4 determinants, &~ is a 3&& 3 determinant, and C~ is a polynomial as in (18).
The full details of the evaluations will be left to a separate paper. "

We remark, by way of motivation, that by the general theory of graphs with four lines joining at each
vertex we expect of the order of (2n)! graphs in nth order, but that the contribution (except for certain
less numerous subsets of graphs) of each graph will be of order 1/(n!). Thus we expect the series for
p, r!, and q, to be divergent like n! In order to sum this type of series efficiently the Pads-Borel
method' is most appropriate. This combines the Borel summation procedure,

ga„x"=f e' Q dt,.=0
" ' no

with the well-known Pads approximant mehod'0 for the analytic continuation of the function in square
brackets in Eq. (20) to the range 0 ~t &~. The procedure is applicable when the poles of the Pads ap-
proximant do not lie in the right half-plane, and Eq. (20) may be evaluated in terms of exponential in-
tegrals thru a partial fraction expansion of the Pads approximant.

If we let u = 16mv/3, and p(v) = 3p(u)/16m for a convenient numerical scale, then we obtain

P(v) = —v+v' —0.422 496 572v~+0. 351 069 598v' —0.376 526 8177v'+0.4960v6+. . .
q, (v) = ——,

' v +,v' —0.044 3102537v'+ 0.039 519 5663v4 —0.044 384v'+. . . ,

[y(v)] ' =1 —ev+, v2 —0.023 069 621v~+0.019886819v~ —0.022 451v'+. . . .

(21)

(22)

(23)
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[2/1)
[2/1)
[4/1l
[8/1l
[8/21
[4/21

0.6536
0.7826
0.7660
0.7908
0.7680
0.7760

The Pade-Borel analysis of P is given in Table TABLE I. Analysis of P(v ).
I. On the basis of Table I, and the examination
of the convergence of table f values of the func- Approximant

tion P(v) we obtain the estimates of Eq. (1). These
1.5967estimates are confirmed by direct Pade approx-

imation when the Pade approximants have at least 1.4299
tao nontrivial zeros, but with an uncertainty per- 1,4152
haps 5 times larger. For a discussion of this 1.4287

type of error analysis, see Hunter and Baker." 1.4229

For the analysis of g„ four Pade-Borel approx-
imants are available, [2/1], [3/2], [4/1], and
[3/2]. By considering the apparent convergence
of the table of values and the uncertainty caused by a possible error in ~* we obtain the estimate of Eq.
(1). The estimate is again confirmed by direct Pads analysis which gives 7), -0.386+ 0.005.

The analysis of series for g,

q(v) = 0.010 973 936m'+ 0.000 914 221v'+ 0.001 796 224'' —0.000 4169v'+. .. ,

is not, at this order, susceptible to an improved rate of convergence by means of the Pads-Borel
method as it does not alternate in sign. Consequently, we have found it more advantageous to analyze
1/y(u). fn this case the [2/1], [3/1], [4/1], [2/2], and [3/2] approximants are available. A review of
the apparent convergence and the uncertainty in v* leads to the estimate of Etl. (1). Direct Pad(t-ap-
proximant estimates are consistent in all cases with the results noted in (1) and (2), but with greater
uncertainty.
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