
VOLUME g6, NUMBER 22 PHYSICAL REVIEW LETTERS $1 MAY 1976

Critical Exponents for the Three-Dimensional Ising Model from
the Real-Space Renormalization Group in Two Dimensions

Zvi Friedman
DePa&meni of Physics, Duke University, Durham, No&h Carolina 27706

(Received 17 February 1976)

The equivalence of the critical behavior of the d-dimensional Ising model at a finite
temperature to that of a d —1 dimensional system at zero temperature as a function of a
transverse magnetic field is used to calculate the critical exponents for the three-dimen-
sional model by applying the Niemeijer-Van Leeuwen renormalization-group method to
the takeo-dhmensional problem.

The renormalization-group method of Niemeijer
and Van Leeuwen' ' has proved very powerful in
yielding critical exponents as well a.s transition
temperatures for various two-dimensional lat-
tices. A direct application of the method into
three dimensions is, however, quite clumsy. A
method is presented here by which critical in-
dices for the three-dimensiona/ Ising model are
obtained, applying the Niemeijer-Van Leeuwen
technique to a tsoo-dimensions/ Ising system in a
transverse magnetic field, at zero temperature.

The equivalence of the critical behavior of the
d-dimensional Ising system as a function of tem-
perature to that of a (d-1)-dimensional system,
at zero temperature, as a function of a trans-
verse magnetic field, has been rigorously proved
by Suzuki~ for d =2. An exact solution for the re-
sulting one-dimensional problem was first given
by Pfeuty, ' and more recently by Stoeckly and
Scalapino. ' The generalization to d &2 has been
conjectured by Pfeuty and Elliott, ' and is strong-
ly supported by their numerical results. It can
also be justified following the arguments in the
Stoeckly and Scalapino' paper and in a paper by
Dietrich. ' One starts from a field theory in d di-
mensions, which is then reduced to d-1 dimen-
sions, using a continuum generalization of the
transfer-matrix technique. ', The equivalence of
the resultant (d -1)-dimensional problem to an Is-
ing model in a transverse field can then be shown
for the original parameters at a certain limit,
similar to that taken when the discrete Ising
Hamiltonian is to be recovered from a continuous
one. '0 The critical behavior of the system is,
however, unaffected in this limit if universality
is assumed. In the equivalent (d —1)-dimensional
problem, the transverse field, rather than the
temperature, is now the disordering agent; the
temperature now corresponds to the inverse
length along the dth dimension of the original
system if periodic boundary conditions are as-
sumed. An infinite d-dimensional Ising system

is thus equivalent to ad-1 dimensional system at
zero temperature in a transverse field. I men-
tion here that a most thorough discussion of the
transfer-matrix technique and its continuous gen-
eralization can be found in a series of articles by
Camp and Fisher. ' They pojnt out the equj. va-
lence of the d-dimensional classical problem to
a (d —1)-dimensional quantum field theory"" for
general d and mention also the relation to a sys-
tem in a perpendicular field.

In this note, I treat the d =3 case by generaliz-
ing the technique of Niemeijer and Van Leeuwen' '
to the quantum-mechanical problem of an Ising
Hamiltonian containing a transverse magnetic
field term that does not commute with the rest of
the Hamiltonian.

The Hamiltonian is
N

x = —rQ&;" ——Q v,.'v, ',
i=j. 29&8

where o,." and o,.' are spin-~ Pauli matrices, the
first sum is over all N sites of a two-dimensional
lattice, and the second sum is on all nearest-
neighbor pairs i, j. The order parameter (v')
will be zero for transverse fields larger than a
certain critical value F, . Note, however, that
(a" ) g0 for a transverse field in the x direction.

As in Ref. I, a triangular lattice is chosen.
The latter is then divided into triangular cells
having three sites. The resulting lattice of cells
is again triangular as illustrated in Fig. 1. At
zero temperature, the thermodynamic properties
are obtainable from the diagonal matrix elements
of the projection operator P(R) = (0) (0~, where

FIG. 1. Tri~~mlar lattice with ce11s shaded.
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j 0) is the ground state of X. Note that P(X) de-
pends on the ratio J/I' only. A basis state is an
external product j v,') j o,'). . . la„') of N eigen-
states of the site operators a,.'. This state can
also be written as a product of (N/3) cell states,
each of which is a product of three eigenstates of
the operators v, ' belonging to the cell. There
are eight basis states per cell, each of which is

an eigenstate of the z component of the total spin
of the cell, having some eigenvalue m. These
states are then divided into two groups of four
states, according to the sign of m. A typical
state is denoted la„',q„), o„'=*1, q =0, 1,2, 3,
u= I, . . . , N/3, o„' now serving as a cell spin. I
next define a renormalization-group transforma-
tion from the site-spin Hamiltonian X to the cell-
spin Hamiltonian X' by the equation

&o;j. . . &o;j. . .P'(X'). . . jo:&.. . jo;&= E&o,',e, j. . . &o:,~). . .P(X). . jo:,e &. . jo',e,&. (»
4„}

An exact solution of Eq. (2), for X, is generally more difficult than the exact diagonalization of the

Hamiltonian in Eq. (1). An approximate solution can, however, be found using various approximation
schemes, the simplest of which is probably one that uses a perturbation expansion for P(X). We sep-
arate K into a piece X0 consisting of the single-spin terms plus all intracell interactions, and a per-
turbation V containing all the intercell interactions. A first-order perturbation expansion for P(X)
yields

p(x)=-jo&&oj+g jo&(ojv" "+g " "
vjo&&oj,

n&0 0 n n&0 0 n

(3)

where j n) is an eigenstate of X, with an eigenvalue E„, and 0 refers to the ground state of X,. It is
important to note that the ground state j 0) is nondegenerate and is invariant with respect to reversal
of any number of cell spins o„. Substituting the expansion (3) into the right-hand side of Eq. (2) re-
sults in an equation for the diagonal matrix elements of P'(X'). Using a similar perturbation expan-

sion for X', where now X0' contains all the single —cell-spin terms and V' all the interactions, one

finds that if X contains only nearest-neighbor interactions, a possible solution, X, to Eq. (2) is

(4)

where the second sum is on nearest-neighbor cells only. The zero-order terms in the perturbation
expansions turn out to be identical (independent of J/I" or J'/I''). By equating the first-order terms
one gets the equation

(e. —s.)(e —s.)
~h~~~ K=J/I' and K'= J'/I". jy„) is an eigen-
state of a single-cell Hamiltonian with a corre-
sponding energy en, and 0' is a site-spin opera-
tor. b, „0 is defined as

&..= j Z,&e.j~, e&&o, ~j ygj, (6)

and 0 refers to the ground state of the cell Ham-
iltonian.

The solution to the equation K* =K'(K*) de-
fines the critical Hamiltonian E*, while the
"temperaturelike" eigenvalue is given by

A, r -—BK'(K)/SKj g gg .

Equations (5) and (7) were solved numerically,
and yielded K*=0.3013, and Xr =1.7651. This
corresponds to a scaling index" a, = ink. r/In3
= 0.5172 [e = (I' —I', )/I', ], which is to be compared

to the value a, = 0.5333, obtained from exact se-
ries calculations. "

In the second order, next-nearest-neighbor
and next-next-nearest-neighbor interactions are
also generated by the transformation. The fixed-
point Hamiltonian was found to be K* = 0.2917,
I *=—0.0104, and M*= —0.0092, where I* and
M* refer to next- and next-next-nearest-neigh-
bor interactions. The temperaturelike eigenval-
ue was found to be Xz ——1.8715, which corresponds
to a, =0.5368.

The "magnetic-field-like" eigenvalue can be ob-
tained from the response to a perturbation of the
form hg;o, ' of the fixed-point Hamiltonian X(K*).
While the lowest-order calculation yielded a~
= lr&.„/ln3 = 0.8424 to be compared to a„=0.8333

1327



Voj.vMz 36, NvMsER 22 PH Ysr CAL REVIEW LE T TERS 31 MAY 1976

from exact series results, "the deviation of a~
calculated to second order from the series re-
sult" is much larger (as ~0.91). The reason for
the divergence is unclear, but may be because of
the fact that the number of intercell versus intra-
cell interactions (two to one in this calculation of
as) is rather large. It is thus hoped that suitable
finite-cluster calculations, or choosing a larger
cell size, will yield more satisfactory results.
(The question of the convergence of the cumulant
expansion and its dependence on the size of the
cells has also been recently considered by Sudbf
and Hemmer. ")

Finally, it is of interest to see how the d-d —1
crossover is described in this scheme. To this
end, consider the (d —1)-dimensional system at a
small but finite temperature 1/P. This corre-
sponds to a d-dimensional system of length I &

~P along its dth dimension. The density opera-
tor is then

l0)(0l+ 1)(lie s +. . .
1+e ' ~+. . . (8)

where &E is the energy difference between the
ground state i0) and the first excited state i1).
As pointed out by Pfeuty and Elliott, ' these two
states become degenerate for I' =F, and

«~ (I" -I",)"&, (9)

where v& is the d-dimensional critical exponent
for the correlation length. We therefore have
for the arguments of the exponentials in Eq. (8)

~«-~/(I' 1.) "~--i,/~„
where $ ~ is the d-dimensional correlation length;
namely, the higher excited states of the (d —1)-
dimensional system become important, when the
correlation length of the d-dimensional system

becomes comparable with its length along the
dth dimension. This is in accordance with the
Fisher finite-size scaling arguments. "
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