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The nuclear spin-lattice relaxation rate 1/T
&

in weakly coupled parallel superoonducting
chains is calculated within a renormalized scheme. Using self-consistently calculated
values for correlation length and order parameter, the T dependence of 1/T, above T, is
obtained for different values of interchain coupling E. For a wide range of ~ the fluctua-
tion-induced enhancement of T,„/T, never exceeds 10%.

In this Letter we report a microscopic calcula-
tion of the nuclear spin-lattice relaxatlon rate
(l/T, ) in quasi-one-dimensional clean supercon-
ductors. The renormalization of the fermion
propagators by the order-parameter spatial Quc-
tuations b, (r) is taken into account consistent with
the Ward identity. The crossover from one- to
three-dimensional critical behavior is treated us-
ing self-consistent Hartree approximation for the
fluctuation propagator. In contrast to a previous
calculation' our results indicate a weak (= la%)
enhancement of 1/TT, above T, . Moreover the

T dependence of l/TT, is found to exhibit two
types of behavior: (l) For very weak interchain
coupling l/TT, shows a peak above T, (of the
three-dimensional ordering), explaining the anom-
aly observed experimentally' in an annealed sam-
ple of Nb, A1. (2) For somewhat larger values of
the coupling parameter the fluctuations produce
only a tail above T, and we expect a peak of the
usual bulk behavior below T„behavior which has
been also reported in other A-15 compounds. '

We consider a. model of weakly coupled super-
conducting parallel chains (in the x direction) de-
scribed by a free-energy density functional4

»tl =&(T)l&(r)l'+ 2 & I& (&)I'+cI» (r)/sx I' +~cl I &&(r)/&~ I'+ I» (r)/as I'].
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The coefficients A(T), B, and C are given by

A(T) =No(T/T, o- l)=NO(t —1); B =Nobo/(ksT, o); b0=1/(1.76); C =NO)o ', (2)

where No, $„and T„represent the bulk density of states at the Fermi level, the correlation length
along the chain, and the BCS transition temperature. The interchain coupling is denoted by c. Using
a self-consistent Hartree approximation' we have

o=B&!l/ (r)l') =(B/n)P, 'tA(T)+o+C[q„'+~(q, '+q, ')B '.
Defining the temperature-dependent inverse correlation length ~(T) as Cx(T)'=A(T)+ v, we perform the
q integration in Eq. (3) by introducing transverse momentum (q„q,) cutoff m/a, where a is the inter-
chain distance (a = 5 A). Consequently we obtain

x' —(t —1)= (2b,t/ye)(a/m $,)'( [x'+ c(m(,/a)']"' —x), (4)

where x(t)=(,x(T) and y=2N, S(,kBT„, S being
the cross-sectional area, of the chain. We note
that the solutions of Eq. (4) go smoothly to the
pure one-dimensional case (@= 0} in the limit e
-0. The plot of the solutions of Eq. (4} is given
in Fig. 1(a) for y = 5 and (,/a = 10, values appro-
priate for Nb, Al. ' Ln the one-dimensional case
(e = 0) there is no phase transition at finite T;
however for finite c we see the appearance of a
three-dimensional ordering with finite T, &T p.
The ratio T,/T„=t, (y, e) for different values of
y as a function of e is exhibited in Fig. 1(b). It
is interesting to note the scaling relation for the
function t,(y, e ),

t.(o'y, ~) = &,(y, u's), (5)

which is valid for any finite value of n. Numeri-
cal evidence indicates that this relation is an ex-
act scaling law; the same relation appears to fol-
low for T,/T„calculated in the mean-field ap-

proximation by Scalapino, Imry, and Pincus' for
weakly coupled chains. From Eq. (4) we estimate
the temperature T„ofcrossover from three-
to one-dimensional behavior by putting x(T „)
= e "2(m$,/a) and solving for T ~ graphically using
curves such as given by Fig. 1(a). The corre-
sponding values of (!b.!') for the same values of
y, e, and ($,/a) used in Fig. 1(a), are plotted in
the inset of Fig. 3. The curves for e @0 a,re ter-
minated at T,(e) on the BCS curve

Using the above calculated values of x(T) and

(!b, !') we calculate the relaxation rate 1/T„. Us-
ing the zero-frequency "one-dimensional" fluc-
tuation propagator'

~(q) = 2~(T)(!&!')/[q'+ ~(T)'1 (6)

we calculate the self-energy of the fermion propa, -
gator given by Fig. 2(a) and we obtain the follow-
ing expression for the renormalized fermion
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FIG. 1. (a) The temperature dependence of the dimen-
sionless inverse correlation lergth &(t) =(O~g ) in Har-
tree approximation for y=5 aud $0/a =10. The curves
are labeled by the interchain coupling values of &.
(b} The reduced transition temperature t, (y, &}=T, /T«
as a function of c for different families of p.
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FIG. 2. (a) Pair-fluctuation contribution to the fer-
mion self-energy; (b) diagrammatic expansion of &«(q,
„) . Heavy lines, ferxnion propagator renormalized
with the self-energy of (a); light lines, bare fermion
propagator; wavy lines, one-dimensional pair-fluctua-
tion propagator defined by Eq. (6).
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propagator:

& IgI2& 1

G(k Gl)= (R —El, — .
)

(7)
QJ + FT + tV~VF K T

where e I, and VF are the electron kinetic energy
and Fermi velocity; o = sgn(1m'). The factor
[VFz(T)] ' plays a role of the electron lifetime
induced by the fluctuations. ' The nuclear spin-

lattice relaxation rate 1/T, is given by

1/T, cc(T/v)lmg, [g„(q,&u„)],.~ +,„(8)
where y„(q, e) is the dynamic electron-spin sus-
ceptibility. Consistent with the approximation
used in Eq. (6) for the self-energy and with the
Ward identity, the susceptibility is calculated
from the diagrams of Fig. 2(b). Performing the

k, q, and ~ summation followed by an analytic
continuation (ie„-cu„+ i0) we obtain in the &o„-0
limit the following result:

where z =x+ iVF~(T)/2 and f(x) is the Fermi func-
tion. Note that in the limit ~(T)-0 the expres-
sion (9) goes over to the well-known BCS result,
characterized by the first two terms. The addi-
tional term acts to remove the high-temperature
divergence (of 1/T, ) reported previously for the
zero-dimensional superconductors using the
same approximation (zero frequency in the fluc-
tuation propagator). " In the present one-dimen-
sional case there is a finite damping of the fer-
mion propagators at high temperatures due to
large values of ~(T) [see Eq. (7)] which prevents
the above mentioned divergence.

The values of T,„/T, for y = 5, (0/a =10, and
various values of e as a function of t = T/T„are
plotted in Fig. 3. In the purely one-dimensional
case (a =0) there is no enha. ncement of the relaxa-
tion rate of the superconductor relative to the
normal metal (in fact 1/TT, remains alwa. ys be-
low 1/TT, „). This in contrast with a previous
calculation' which shows an enhancement diverg-
ing as T T p The physical reason for our finite
result is the proper renormalization of fermion
progagators and the use of self-consistently cal-
culated values for K(T) and & Id I'&."

For finite values of c the plots in Fig. 3 are
again (like for & Ib. j'& in the inset) terminated at
the actual three-dimensional transition tempera-
ture T, (e). The curves exhibit two different types
of behavior as a function of c: (1) For e ~5x10 '
there is an enhancement which peaks ahorse T„
this anomalous behavior was actually found in ex-
periments on annealed Nb, Al. '" (2) For values
of &)10 there is only a, fluctuation-induced tail
which may go over into a peak below T, . In fact,
such behavior seems to be corroborated by the
measurements' on unannealed Nb, AI which show
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FIG. 3. The temperature dependence of the relaxation
rate of a quasi-one-dimensional superconductor relative
to a normal metal for y = 5 and $0/a = 10. The curves
are labeled by the values of &. The experimental points
(g) are taken from Ref. (2) for an unannealed Nb3AI sam-
ple (with T, =18.7'K) and are fitted by the ~ =0.001 curve
with t = 0.9. Inset, the corresponding curves for
((IAI)) /kBT~0 used in the calculation of T,„/T|.

! a peak below T„peak which we believe is of us-
ually three-dimensional BCS origin (see the ex-
perimental points in Fig. 3)."

In conclusion, we believe that our renormalized
calculation is suitable to describe the effect of
the superconducting fluctuations in the one-dimen-
sional crossover regime above T, . Inclusion of
finite frequencies of the order-parameter fluc-
tuations is not expected to produce drastic chang-
es of our results in the vicinity of T, . In the
three-dimensional case when a real phase transi-
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tion occurs [K(T)- 0], only the static fluctuations
are important. Far away from T, the values of
X(t) become bigger and finite frequencies as well
as finite q values will give a significant contribu-
tion to T,„/T, . However, an exact treatment of
the fluctuation propagator with finite frequencies
may appear much more difficult to handle analyt-
ically. A calculation of the relaxation rate which
involves the three-dimensional fluctuations is in
progress and we expect to cover temperatures
both above and below T, . However, more experi-
ments on quasi-one-dimensional super conductors
are needed to give more reliable information
about the values of the interchain coupling c and
crossover temperature T„.
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