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the magnitude of the sublattice magnetization is
mainly determined by temperature and not by
field.

We consider the ordering treated in this paper
to be characteristic for systems which consist of
weakly coupled low-dimensional systems, result-
ing in a large spin reduction at low temperatures.
Experiments are now in progress to study the
long-range order and the field dependence of the
sublattice magnetization for other ALC systems
with a variety of ~J'/J~ values.

Note added. —Recently Ishikawa and Oguchi'~
have calculated the zero-point spin-reduction for
Heisenberg antiferromagnets, in which low-di-
mensional interactions dominate. Extrapolation
to the ideal 1D system with S = —,

' gives a spin re-
duction AS = —,', which is the physically correct
answer for the 1D Heisenberg antiferromagnet.
Interchain interactions J'/J ~ 10 ' result in a spin
reduction of 60/o in zero magnetic field.
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A general method is proposed to construct a relativistic particle dynamics for an N-
body interacting system and new separable three-body interactions of order c are pre-
sented. Implications of the existence of nonunique solutions for practical application of
the theory are discussed.

Recently, Foldy and Krajcik have constructed
a representation of the inhomogeneous Lorentz
group (IHLG) corresponding to an N-body inter-
acting system, valid to order c ', which satis-
fies the condition of separability. " They used
the work of Zhivopistsev, Perolomov, and Shiro-
kov (ZPS)' as a basis to obtain an interesting re-
sult which shows that the Hamiltonian of the sys-
tem should contain three-body terms as well as
the two-body terms of ZPS. The purposes of

this Comment are threefold: (i) To propose a
general method which, at least in principle, if
solutions exist, allows construction of a repre-
sentation of the IHLG valid to all orders in c '
for an N-body system with separable interac-
tions." (ii) To present new three-body interac-
tions of order c ' which satisfy the separability
condition. (I have found that the three-body term
obtained by Foldy and Krajcik is not the only pos-
sibility. Their form is just one of the infinite
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number of three-body interaction terms that I
have obtained. ) (iii) To discuss the effects aris-
ing from the existence of nonunique representa-
tions of the IHLG on the practical applications.
Specifically, I comment on calculations done pre-
viously using this approach to estimate the rela-
tivistic corrections to nuclear binding energies.

It is known that a two-body relativistic theory
ean be constructed by using a prescription pro-
posed by Bakamjian and Thomas, ' but an N-body
relativistic theory constructed by the same pre-
scription is not physically acceptable because
the interactions introduced by this prescription
do not satisfy Foldy's separability condition.
Here, I shall call the two-body interactions ob-
tained by the Bakamjian-Thomas (BT) prescrip-
tion, the two-body BT interaction. In a recent
article, ' I have used the two-body BT interaction
to derive the relativistic corrections to the po-
tential to all orders in c ' and have found that
to order c ' the correction terms reduce to
Shirokov's result. ' These results suggest that
the sum over all pairs of the two-body BT inter-
action will reproduce, to order c ' and lowest
order in the potential, the results of ZPS. Since
the sum over all pairs of the two-body BT inter-
action also provides all higher-order terms, it
can be used as input to construct a most general
relativistic theory valid to all orders in c ' for
an N-body system with separable interactions.
This does not imply, however, that the expres-
sions for the generators of the IHLG for the N-
body interacting system can be obtained by sim-
ply adding the sum over all pairs of the two-body

~

BT interactions to the expressions for the free
generators. The reason is very simple: The ex-
pressions for the generators so obtained do not
satisfy the Lie algebra of the IHLG. The basis
of the method is, therefore, to introduce an un-
known operator to the Hamiltonian and another
unknown operator to the boost operator. By re-
quiring the new expressions for the generators
to satisfy the Lie algebra of the IHLG, one is
able to determine these unknown operators, or-
der by order, in a systematic fashion from the
commutation relations.

Takeo-body BT interaction. —Consider a system
which consists of two free particles, particle i
and particle j, without interaction. Let m;, r;,
p;, and s; be the mass, position operator, mo-
mentum operator, and spin operator for particle
i, respectively. Then the nonrelativistic c.m.
dynamical variables (R»; ~, PU", q;;", r;&",s;, s;" )' for this two-particle system can be
defined in terms of the individual particle dynam-
ical variables (p;, p;, r;, r;, s;, s;), and the rela-
tivistic c.m. dynamical variables (P;;, R;&, q;;,
r;, , s;, s;) can be obtained from the correspond-
ing nonrelativistic c.m. variables through a uni-
tary transformation. ' If two symbols, X,j and
X;;, are used to represent an arbitrary nonrela-
tivistie and relativistic c.m. variable, we have
X;;= exp(iu;;)X;; exp(- iu;, ) The .Hermitian
operator I;& was obtained in Ref. 7. The genera-
tors of the IHLG can be expressed in terms of
the operator I;; and the nonrelativistic c.m. dy-
namical variables. The Hamiltonian and the
boost operator can be written as

H»; = exp(iu;;)E; exp(- iu „),
K;»=exp(iu;;)[-2(R;;" E;; +E;;OR;;" ) —(P;; &&S;; ~)/( Mz +o;E)»]oe px(-iu;;),

'- [~ '+(q )']'"+[m '+(q )']'" E '=[(M ')'+(P. )']"' and S;;" = r"" &&

+ s;N + s; . Now, we apply the BT prescription to introduce the internal interactions into this free
two-body system. This can be done by modifying the mass operator of the free system M;,.' to include
a potential V;z . That is, we write the mass operator for the interacting system as M;; =M;
+V;; . The potential introduced here is a rotationally invariant function of the nonrelativistic inter-
nal c.m. dynamical variables. This potential is also symmetric in its subscripts and is zero if sub-
scripts are equal. Furthermore, it must vanish sufficiently rapidly at large ~r;; ~

in order to satisfy
the separability condition. In terms of M;; and E;;" = [(M;; )'+ (P;; )']'", the generators for the
interacting system, H; and K;, can be obtained from Eq. (1) by replacing M;;0 and E;;o by M;;
and E»;"~, respectively. (I assume that P;, '= P;» and J» ——J;;.) The two-body BT interactions are then
defined as

=&) ' —H;;, W;; = K;g' —K;~.

Further, V;; and W;; can be expanded in powers of c"'. We have V;&= V;; ' +V;; ' +. . . , and W;;
=W;; ' +W;; ' +. . . . It is not difficult to show' that Shirokov's result can be obtained from V;; ' ."
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X-body case.—The heart of the present construction is to write the expressions for the generators
of the IHLG for the N-body interacting system in the form

Hr'=Hr+2+ V;;+V, Kr'=Kr+a+W;;+W, (3)

with Pr'=g;P;= Pr and Jr'=g;J;= Jz, . In Eq. (3), Hz =g,E; is the free Hamiltonian, Kz =g,K; is the
free boost, V~& and W;z are the two-body BT interactions defined by Eq. (2), and V and W are two un-
known operators to be determined from the commutation relations. Here, J&, E», and K; are defined
in Eq. (5) of Ref. 7.

We can expand Hr, Kr, V, and W in powers of c ' and write them in the form Hr=g;m;+Hr '
+H ' + K =K +K ' + V=V )+V(' +. . . , and W=W +W +. . . . Now, if we require
the generators given by Eq. (3) to satisfy the Lie algebra of the IHLG, we obtain the following commu-
tation relations:

[J V(o)] [P V(o)] [K (o) V(o)] 0

for zeroth order;

[(J,)., (w'"), ] = ie„„(w")),,
[(Pz)~ (W )8] = z6„8V

[(K '), (w" )8]+[(w ' ), (K ')8]=0,
[J., V'"]=[P., V'"]=0,

[K (0) V(2)] [V(o) B(2)]+[/(0) W(2)] g [W (2) V (0)]
i, j,k

for order c ',

[(J,)., (w'"), ] = ie„„(w(')), ,

[(p,)., (w'"), ] = i()„,v'",
[(K '"»(W'")8]+[(W'"),(Kr'") ]=[(W"' —B"') (W"') ] —[(W'") (B"') ]

—Z [(w;;"')., (w;, '"),],
i,j,k

(5a)

(5b)

(5c)

(6a)

(6b)

(7a)

(7b)

(7c)

(&b)

[J v«)] [p v( )] () (6a)

I:
'" '"]=[ ", "']+[ '", '"1+[ ", '"]+[ '" "]+&&[ "' "]+[ '" '"]&

Q ([W (2) V (2)] + [W (4) V (o) ]].
f,j,k

for orderc-4 etc. Here, B(")=K (2'+op W "'+W'"' W(2'=H, (2'+2& V (" ( I= ,0,I,2
. . .), and o. , P, y = I, 2, 3.

These equations are to be solved for V ' ~ and W ' ". Solutions for these operators are not unique.
To be physically acceptable, they must also satisfy the separability condition. This requires that if
the N-body system is divided in any way into two subsystems A and B, and if every particle belonging
to A is infinitely separated from every particle belonging to B, then V ' and W ' " should assume
the separate forms V&(' ) +Vs(' ) and Wz('""' +Ws(' "), respectively. (Here V„(' ) and W„(' ") in-
volve dynamical variables referring to particles belonging to sybsystem A only, and ~~ ~ and W
involve dynamical variables referring to particles belonging to subsystem B only. ) This requirement
is satisfied if V ' and W~' " satisfy the strong-limit conditions

lim Il exp(- ~ a' P~)v(' ) exp(~ a' P~)+.II= 0, (»)

(gb)limIIexp(-ia P&)W" ")exp(ia Pz)%' II=0,
a~~

where P& is the total momentum of the subsystem A. , and 4„and+ are two dense sets of vectors of
the Hilbert space.
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The solutions for P~ ~ and W ~+ should include only many-body interaction terms which vanish
when the system considered has only two particles. This is because the two-body BT interactions are
the most general form for any two-body system. Any two-body interaction terms introduced into both
V~' ~ and W ' " can always be incorporated into two-body BT interactions.

Solutions for V»') should include all many-body terms (from three-body up to N-body terms) of zeroth
order. These terms are arbitrary, rotationally invariant functions of the nonrelativistic internal c.m.
dynamical variables. If included, they must be constructed in such a way that the strong limit, Eq.
(9a), is satisfied. Some of them can be constructed from the two-body interactions V;;»'). The solu-
tions for V ' are then used to construct W ' which satisfies Eqs. (5) and (9b). Again, solutions for

are arbitrary many-body terms.
The solutions for V ' include both particular solutions and the arbitrary solutions obtained from V

and W~'). Particular solutions are those solutions which satisfy Eqs. (6), with V~') and W»') set equal
to zero, and Eq. (9a). I have found that the particular solution obtained previously by Foldy and Kraj-
eik is not the only possibility. Their solution is just one of the infinite number of particular solutions
I have determined. A general expression for these particular solutions can be written as

V(2) (2»)-1 g fQ, [W (2) V (0)]+ [W (2) V (0)].Q
i, j,k

With

Q;;, = (X;»»P;+ Y;;,P, +Z;;»P»)/(X;;»m;+ Y;;»'»»», +Z;;„m,) .

(10)

Here, X;;»—=X(m», m;, m „), F»;„-=Y(m;, m;, m „), and Z;z» ——Z (m», m;, m, ) are arbitrary real constants
(of the same order in c ) which may depend upon the masses m», mz, and m». Since the condition
[V ', Pr]=0 requires that Q;,„=Q;„, these constants are not completely independent; they must satis-
fy the following conditions: X;;»=X;„., Y;»=Z;;„and Z;„;=Y;;». This expression for Q;;» makes it
clear that the arbitrariness of the solution is characterized by one independent (continuous) parameter.
The following operators are all special examples for Q;;„: p;/m;, (p;+p»)/(mz+m»), »(p;/m&+p»/m»),
2[(p;+C,p»)/(m»+C, m»)+(p;+C, p»)/(m;+C, m»)], [p, +C, (p,. +p»)J/[m;+C, (m;+m»)], and (m;"p»+m;™p,
+m»"p»)/(m»"+'+m;"+'+m»""), where C„C„and n are arbitrary constants. The solution obtained
previously by Foldy and Krajcik is the one given by Eq. (10) with a particular choice of Q, ,»

= (p»+p, .

+p»)/(m;+m&+m»). The expression for V»') given by Eq. (10) is not, however, the most general form
for particular solutions since we can always add to V '~ some three-body terms of order c ' which
commute with J~, P&, and KT . For instance, we can have solutions of the form

P(2) V(2) +g D (2)V (0) V (0)
ijk

where D; jk
' =Di» ' * are constants of order c ' constructed from m;, m j, and mk. With an appro-

priate choice of Di» ', for example, I have also found the following particular solutions:

P(2) ~ g (W (2) Q V (0) V (0)Q W (2)
)

i,j,k

where Q»;, are the same operators used in Eq. (10). My result shows that even if those arbitrary
terms obtained from V and %~' are ignored, the expression for V~' is still not unique.

The existence of many independent three-body interactions for V ' will cause ambiguities in the
practical applications. For example, the result obtained here valid to order c can be applied to es-
timate the relativistic corrections to nuclear binding energies. Such calculations have been done,
without including the three-body interaction terms, by several authors. ' " Ambiguities will certain-
ly arise if one would like to improve these calculations by including these three-body terms in the cal-
culations. Thus, these estimates of relativistic corrections are valid only if the contribution from all
three-body terms is small compared with that from the two-body terms.

The solutions for V ', W ', and all higher-order terms are extremely difficult to find and the com-
plication increases as the order increases. Although one hopes to solve these problems, the existence
of many independent solutions does raise a question of the practical value of these higher-order solu-
tions, particularly if the solutions for these higher-order terms do not impose any additional con-
straint on the solutions for the lower-order terms.
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A unified description is given of all available data on direct lepton production in proton-
nucleon collisions, It is shown that the lepton cross sections exhibit a simple scaling be-
havior when expressed in terms of the radial variable, xz. A striking similarity is noted
between the behavior of the lepton and negative kaon production cross sections.

A considerable amount of data has been accumu-
lated on the direct production of leptons in proton-
nucleon collisions covering a wide range in v s,
p» and 0* (center-of-mass angle of direct lep-
ton)." The unexpectedly large magnitude of this
production makes it difficult to explain in terms
of known mechanisms' and this process remains
an intriguing enigma.

/

To gain some insight into the production of di-
rect leptons, it is of value to examine the invar-
iant cross section, or equivalently, the ratio of
direct leptons to pion production over a wide
range of kinematic variables and to look for a
systematic behavior. In particular, it is of inter-
est to analyze the direct lepton production data in
terms of the radial scaling phenomenology, which
has been shown to be a good approximation to in-
clusive hadron production in proton-proton colli-
sions. ' There is no a pviovi reason why this de-
scription of inclusive production of hadrons should
work for direct lepton production, and a violent
disagreement with the radial scaling picture
could mean a radically different production pro-

cess than that of hadron production. Conversely,
an agreement with radial scaling would furnish a
systematic view of the process and could lead to
information about the quantum numbers involved
in the direct lepton production process.

Taylor et a/. have previously shown' that the
invariant cross section for single-particle hadron
production in p-p collisions can be described by
the form:

Ed(r/dp'= F(p„xs—),
where xs—= 2p*/v's, p~ is the three-momentum of
the hadron in the proton-nucleon center-of-mass
frame, and Ks is the total energy in the center-
of-mass frame. To a good approximation all had-
ron production cross sections exhibit scaling
when expressed in this form. It has also been
found to be a fair approximation to assume factor-
ization, "
where g(p~) is roughly the same function for all
hadrons, and f(xs) is a function in which resides
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