VOLUME 36, NUMBER 20

PHYSICAL REVIEW LETTERS

17 May 1976

ly decreasing component of ABps/ps in Fig. 1is
described by the exp(—4TI%) term of Eq. (7). The
experimental quantities & are given by 4T", which
according to the foregoing discussion of Eq. (4)
accounts for the observed field and concentration
dependences in Fig. 2.

To our knowledge, this is the first direct opti-
cal observation of time-dependent quantum-inter-
ference effects in the condensed phase.?® The
present experimental approach should also be a
useful tool for spin-lattice relaxation measure-
ments in the nanosecond range.
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A spherical model of a spin-glass is solved in the limit of infinite-ranged interactions
with a Gaussian probability distribution. We use the known properties of a large random
matrix, and show that the results are identical to those obtained by then — 0 trick. We

believe that the solution is exact.

Recently there has been much interest in the
problem of magnetic systems with random ex-
change interactions—spin-glasses.'”® Experi-
mentally such systems show definite anomalies
similar to those associated with a second-order
phase transition.”"® Since a real spin-glass is a
dilute system of magnetic ions in random but
fixed positions interacting via a long-ranged os-
cillating interaction, we must treat a quenched
system in which the free energy is calculated as
an average over the interaction configurations of
the free energy for a fixed configuration. To
date, there have been two main approaches to the

problem of which the most fruitful has been the
trick of averaging the nth power of the partition
function and taking the limit » - 0 at the end.!'®
Very recently, Sherrington and Kirkpatrick® us-
ing this technique have investigated the Ising-like
spin-glass analog of the Kac'® model in which
mean-field theory is exact and the statistical
mechanics solvable. However, they obtain some
odd results in the spin-glass phase, in particular
a negative entropy at zero temperature. Other-
wise, their results are physically very appealing.
More recently, Thouless ef al.!* have investi-
gated this model by resumming the averaged high-
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and low-temperature expansions, thereby avoid-
ing the use of the n -0 trick. Using the eigenval-
ue spectrum of a large random matrix'? and prop-
erties of the corresponding eigenvectors, they
find identical high-temperature and critical be-
havior, but rather different low-temperature
properties, in particular a quadratic rather than
linear specific heat. This indicates that, in this
case, the analytic continuation of the high-tem-
perature results gets one on to the wrong branch
of the free energy at low temperatures.

In this Letter, we investigate the same system
in the spherical-model limit'® by both techniques.
Although this is even more unrealistic than the

Ising case, the thermal averaging is more straight-

forward and allows us to concentrate on the prob-
lem of averaging over the random interactions,
and, hopefully, to throw some light on the contin-
uation in n. In contrast to the Ising case, we find
identical results by both methods.

The Hamiltonian we consider is

where the sum is over all distinct pairs of lattice
sites. The interaction J;; is infinitely long ranged
with probability density

P(Jij) = (2m0?)” 1/2 exp[- (Ju - 0)2/202], (2)

where the standard deviation 0 =JN"/2 and the
mean J, =J,N"1. We use the intensive variables
J and jo in order to obtain a sensible thermody-
namic limit. We first consider the case J,=0.
The first step is to diagonalize the matrix J;; by
an orthogonal transformation and introduce new
variables S, defined by

Sy =23 ¢Ald) S, 3)

where (A7) is the orthonormal eigenvector of J;
belonging to the eigenvalue J,. Since eigenvalue
density p(J,) obeys the semicircular law'?

p(J)) =(4T2 = Jy ) 2 /20 ]2 (4)

for J,=0 in the limit N - «, we can carry out the

H==33J;;S:S;, (1) standard spherical-model manipulations using the
(5 spherical constraint 2;S;2=N. The partition func-
tion becomes
- c+ i °° -
z=(@mi)y [ . dz exp{Nlz - (2N)"* 2, 1In(z —~J,/27)1}, (5)

where the contour of integration is to the right of the largest eigenvalue, 2J, and we have omitted the
spherical normalization. The only problem which could arise is in the interchange of orders of inte-
gration over z and S, before taking the thermodynamic limit because the eigenvalue spectrum is bound-
ed only in the limit N- », However, for sufficiently large N, the probability of finding an eigenvalue
larger than 2J is so small that the error made is negligible,!*

The standard saddle-point equation for z is

z - (22— jz/Tz)uz =<72/T2,

(6)

where we have used (1/N)2;, - JdJp(J). Equation (6) has the solution z =3(1+J2/T?) for T >J, so that
we can identify the critical temperature T,=J. For T <J, Eq. (6) has no solution, and the saddle-point
value of z sticks at f/T, the branch point of the integrand of Eq. (5). The free energy per site aver-
aged over the eigenvalue spectrum of Eq. (4) is readily found to be

(F@Y)a = -J%/4T 3T (1+1n2), T>T,,
Y TNT In(T/2J) = J +3T, T<T,,

(7

corresponding to a specific heat per site of J2/2T2 for T > T, and 3 for T <T,, and a negative low-tem-
perature entropy which diverges logarithmically as T -0, This last is not unexpected since the uni-
form short-ranged spherical model displays the same pathology.

In the presence of a uniform magnetic field z, the saddle-point equation is modified to

1=Jarp@)ie -J/21) 1 +[n3()/4T%)(z - 7/2T)" 2},

where

h(Jy) =h2,(i| .

(8)

On the average, using the orthonormality of the eigenvectors, we can replace #%(J) by 42, in which case
it is clear that the solution of Eq. (8) always has z>J/T. Hence there is no transition in the presence

1218



VoLUME 36, NUMBER 20

PHYSICAL REVIEW LETTERS

17 May 1976

~ ™
UAj para
magnetic
|

spin ferr
magnetic

glass
! i,

FIG. 1. The phase diagram for the spin-glass.

of a uniform field. The reason for this is that a
uniform field has a component r(2J) correspond-
ing to the largest eigenvalue which plays the role
of an ordering field. The analogous case in a uni-
form ferromagnet would be a local field acting at
a single site which, in the spherical model, wash-
es out any transition. In the limit # -0 it is
straightforward to show that the uniform suscep-
tibility x equals 1/7 for T >T, and 1/J for T<T,,
displaying the expected Curie law above T, and
cusp atT..

From the point of view adopted in this Letter
the parameter! ¢ =(n;%),, is not the natural order
parameter, but the thermal average (S,5 is, i.e.,
the mode corresponding to the largest eigenvalue,
in analogy to a uniform ferromagnet. To evaluate
this, we may consider either the system in zero
field as in Berlin and Kac'® or apply an ordering
field £(2J) and let #(2J) ~ 0. Both methods give
(S, =N2(1 —T /J)'/2 for T <T with all other (S,)
=0, Since the mean magnetization per site is

(mi>av :Z;)\«il)\»av(S)\) (9)

and (¢ 1))y =0, but ([(Z[0)]) a2 =1/N, we see
that %), =0 but (n,2),, =¢=1=T/J for T<T,.

It is readily shown that the staggered susceptibil-
ity [linear response to #(2J)] has an exponent y
=2, in agreement with the scaling laws.

When the mean J;, of J,; is positive, allowing
the possibility of ferromagnetic ordering, the
eigenvalue spectrum is modified and for <70><7 an
isolated eigenvalue breaks away from the contin-
uum. To see this, we write the interaction ma-
trix J as J, + J,, Where J, has elements with mean
zero and random Gaussian distribution, while J;
has zeros aAlong the diagonal and all other ele-
ments J,. J, can be diagonalized by an orthogonal
transformation, which, when applied to :72, leaves
invariant the probability distribution of the indi- |

_Play_I?

vidual elements.'? Since J, is O(1/N), the total
interaction matrix is transformed to the same
form as the J,=0 case, but with a single extra
diagonal element of J,. The problem is now for-
mally identical to that of a single local impurity
in a crystal,’® and we can use standard techniques
to compute the new eigenvalue spectrum and the
properties of the largest eigenvector. As expect-
ed, we find

_{pol@), Ty<T
PO o + Mo =0), T,>3,  (0)

where p,(J) is the J, =0 density |Eq. (4)] and J,,
-J +J 2/J

When J >J, the isolated eigenvalue at J,, deter-
mines the critical temperature and corresponds
to ferromagnetic ordering. Performing the stand
ard spherical-model manipulations, it is clear
that for J,<J the results are > independent of Jys
while for J >J we have T 0. The specific heat
per site is J2/2T2 (T>T¢) and 2 (T <T,), where
we see the expected mean-field discontinuity of
Q-7 2/J?) across the critical isotherm, corre-
sponding to a specific heat exponent a =0,

Again, from this point of view, the natural or-
der parameter is (S ,m), and the mean magnetiza-
tion per site becomes

(7ni>av =N~ 1/2«” Jm>>av<s,fm>; (11)

where (I|J,,) is the element of the eigenvector be-
longing to the largest eigenvalue J,. The label /
denotes the position of the entry J, in the interac-
tion matrix after the first orthogonal transforma-
tion. Using the techniques described by Izyumov,'®
we find

(U T ay = (L = T2/ T2 (12)

with the average value of all other eigenvectors
zero, whence

@0“ = (1 _jz/j02)1/2(1 _T/j'o)llz.

There is a corresponding divergence in the uni-
form susceptibility for T >7T,=J,>J proportional
to (1 =J2/J2)(1-J,/T)"*, displaying the expected
classical exponent vy =1 consistent with the scaling
laws. Putting all these results together, we ob-
tain the phase disgram of Fig. 1.

We obtain identical results by using the n =0
trick.!’® Making the same assumptions as Sher-
rington and Kirkpatrick® about the evaluation of
the average free energy by steepest descents, we
find in the limit»~ -+ 0

(13)

Jx

T —arzt*"3 —yz 1“(’“ Jy) 2

4T(z +Jy/2T) T 4T (z +Jy/2T) ’

(14)
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where & =n;).,(o/T)*'? and y=Jq/T have the
same meaning as in Ref. 5 and z is the variable
introduced by the spherical constraint [Eq. (5)].
The extremal values of Eq. (14), corresponding
to a minimization of the free energy for »>1, but
a maximization for n<1, give three possibilities:
(i) m=¢ =0 (paramagnetic phase); (ii) m=0, ¢=1
-T/J " (spin-glass phase); (iii) m 2=(1- T/Jo)(l
-J2/J3?), q=1-T /J, (ferromagnetic phase).
These yield all the results derived previously,
where we have selected the solution which mini-
mizes (maximizes) the free energy for n>1 (n<1).
It is interesting to see that, in contrast to the Is-
ing case,!! the analytic continuation of the n>1
results gets us on to the correct branch of the
free energy.

It can also be shown that the mean-field equa-
tion used by Thouless et al.'! is correct for the
spherical model. In the presence of an external
field %; on the site 7 this equation has the form

J1 =EiJij7nj_mi‘72(1"‘q)/T +hy. (15)

The mean field f; is related to the local magneti-
zation by f; =z'm; in the spherical model, and the
spherical condition gives 2’ =1/(1 -¢). Solution
of Eq. (15) in terms of the eigenvectors of J;
gives an expression for »; which is identical with
that obtained from a direct solution of the spheri-
cal model, which is

_Z}x <ll7\>h)\

z-dJ,/2T "

To conclude, we have shown that in the spheri-
cal-model limit, the spin-glass with infinite-
ranged interactions distributed according to a
random Gaussian is solvable by using the proper-
ties of a large random matrix.'? Identical results
are obtained by the n -0 trick!’ ® and mean-field

(16)
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