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Recently aPpxoximate solutions to renormalization-group equations were used to cal-
culate the double-power "tricritical" scaling equation of state. We show that this equa-
tion can be simply calculated using our exact renormalization-group trajectories. The
equation of state is expressed expEiHtEy in terms of nonlinear scaling fields.

In a recent Letter' it was suggested that the
crossover or "double-power" scaling functions'
germane to "tricritical"' ' and critical points
may be constructed using iteration techniques
proposed by Wilson, Nauenberg, and Nienhuis, '
together with an appropriate mean-field approxi-
mation, by matching the Wilson- Fisher critical
behavior with a Landau-like expression with fluc-
tuation corrections.

For the problem treated in Ref. 1, approximate
solutions of the corresponding recursion rela-
tions were derived. On the other hand, we had
previously derived' the exact O(e) nonlinear solu-
tion of the renormalization group equations for
the same problem. ' '

In this Comment we show (i) that our exact so-
lutions are particularly convenient for a match-

ing procedure of the sort introduced in Ref. 1,
so that there is no necessity to produce approxi-
mate solutions, and (ii) that the equation of state'
can be expressed directly in terms of the nonlin-
ear scaling fields calculated in Ref. 6, permit-
ting a completely explicit expression (automati-
cally in asymptotic Griffiths form) for the equa-
tion of state, in contrast to the implicit equation
given in Ref. 1. Our results validate the ap-
proach of Ref. 1 and support its claimed poten-
tial utility for problems where exact trajectories
may not be easily found.

As in Ref. 1 we begin with a Hamiltonian den-
sity of the form

X = —(Vs) - h' s r++s-us + -vs +. . .1 2 ~ 1 2 1 4 1 6

in dimensions d —= 4 —e, where s(x) is an n-com-
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ponent vector spin field and h is the ordering
field. The differential equations for r and u [con-
sistent to O(e)] are' ""

r, =2r, +2(n+2)u, /(1+r, ),
u, = eu, —2(n+8)u, '/(1+r, )',

where the fluxions denote differentiation with re-
spect to the renormalization parameter l. The
approximate solutions of Ref. 1 were obtained to
leading order in u(l) and e by assuming that ~r, ~

~ 1. However, for r and u noncritical, ~r, ~-~
and u, -~ under the renormalization group ac-
tion. "" The approximation ~r, ~

s 1 was avoided
in Ref. 6, where it was necessary to assume only
that the critica/ values of r and u are O(c).

Refer ence 1 uses a modified homogeneity r ela-
tion for the free ener gy,

"""
&(&, r, u) =e "E(h.„r„u,)

+ nf, e "' ln(1+ r, , ) dl', (2)

where h, -=It exp[(1+d/2)l]. Reference 1 suggests
that for large l, the first term. be treated in the
mean-field approximation (with fluctuation cor-
rections). Because of their approximations, the
limit l-~ cannot be taken. Instead, they use a
value of l such that ~r, ~

= 1. Using tke exact solu
tions, eve may take the l =~ limit, We find that
r, exp(- 2l) and u, exp(- el) have finite limits as
l- ~. Using these limiting forms" we are able
to calculate the magnetization equation of state
[since the second term of (2) does not contribute
to the equation of state, it will not be discussed
further here"]. The general form of the equation
of state obtained conforms to that suggested for
the global behavior of competing fixed points. '
From (2) we obtain an explicit expression for the
renormalized mean-field approximation to the
equation of state:

h =lim[r, exp(- 2t)M+u, exp(- el)M'].

The nonlinear scaling fields are'

(1+r, )l, /Y, » = const e2',

u, /Y; =conste",

where b,„-=(n+2)/(n+8) and

Y,
-=(1 —y, /y, ) exp(et, a„y, /cp, )

with

Q)
=—

~

1 —t(
~

expp 6t( (1 —2A„) .

(1+r)t —
r, Y,~»-

r, exp(- 2t) =

Q
u, exp(- cl) = —Y;,

(6)

where henceforth we write y, u, t, and Y for y»
Qp tp and Yp. For all noncritical Hamiltonians,
~r, ~- (and t, —1) as l-~. Thus, we need only
calculate Y, for large l. We expect Y; to ap-
proach some invariant limit and therefore Y„
should be expressible in terms of the renormal-
ization invariant'

limr, exp(- 2t) = ~ Y„»,(1+r)t
g —y oo

limu, exp(- el) = (u/I') Y„.
$~00

(8a)

(8b)

Combining (8) with (8) we obtain

We see immediately that if Y is to be finite and
nonzero, we must have ~r, ~'y,

' invariant for large
l. To the required order, we find Y„=I"/(I"+1),
where v ' = 2 —eA„. Therefore we can write

To calculate r, exp(- 2l) and u, exp(- el), we
use the nonlinear scaling fields derived in Ref. 6,
which are given in terms of variables

~s
t, =- +(n+2)

( ), ,

I u)
2e(n+8) (1+r,)' '

The Wilson-Fisher fixed point is at t =0, y =1,
while the infinite Gaussian point is at t = 1, y=O.

(9)

In (9) the nonlinear crossover information is con-
tained for all values of t, not just in the critical
region (t«1). Since the behavior for large t of
the equation of state should not be expected to be
universal, we will use the forms of (9) valid for
t«1 (retaining, of course, any singular term
for t- 0). Consonant with the approximations
already made, we will take the O(e') parts of (9),
retaining ~ only in the exponents. On making the
changes of scale h- h[e(n+8)] '7' and M- M[2m(n
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+8)]' ', (9) becomes

~
i~&v

y&+ I& I'' & —y
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I t I"'» iii'"(1-y)'
where y=2v. Of course (10) represents only the
lowest-order approximation to the equation of
state. However, it can be shown" that even the
higher-order corrections are functions of the
nonlinear scaling fields given in (8). Thus al-
though the details and accuracy of the equation of
state are changed by the higher-order terms, the
nonlinear crossover effects are the same.

Equation (10) explicitly exhibits the double-
power structure of nonlinear crossover between
the critical and "tricritical" behavior. ' ' Vari-
ous limiting behaviors of (10) are easily obtained:

(i) t- 0 with y held fixed. The e—quation of
state is

I I I I" ~, I ~ I"
yX n

(11a)

Thus, we immediately see that y =1+eh„/2 is
the susceptibility exponent and that 2P =1+ 2m(b, „
—1) is the magnetization exponent. Dividing
through by Ms =M'+', we see that (11a) is in the
usual Griffiths asymptotic scaling form' ":

Pz sgnt [ tl ~ 1 I tf
(11b)

(ii) y-0 with y~~t ~'" fixed. Y is simply a-
constant, and we obtain the equation of state for
the Gaussian model,

I = Y„m+Y„"M'~t~". (12a)

Making additional scale changes in M and h, we
write (12a) in scaling form:

with y =1 and 2P =1 —e/2.
The method employed here is general. For

each Hamiltonian, we need to calculate the limits
of the renormalized coupling constants for large
/. If u is a coupling constant for a term involv-
ing m spine, we need lim, „u„(E)exp{-[d+m(2
—d)] l]. This always is given by a simple non-
linear scaling field multiplying some function of
the nonlinear renormalization invariants.
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In Fig. 1 the units of d'o/dgdE should be 1tb/sr
MeV (not nb/sr MeV) on both vertical scales.


