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The interaction of a K"=5 two-quasiproton band with a Ã~ =5 two-quasineutron band
in OCf has been observed using proton and neutron transfer reactions and radioactive-
decay measurements. Configuration-mixing calculations using a two-body neutron-pro-
ton force give an interaction matrix element in good agreement with the value derived
from our measurements.

In recent years the interaction of two-quasineu-
tron states with two-quasiproton states has been
observed' ' between high K states in the hafnium
region. Massmann et al. ' have developed a theo-
retical treatment of configuration mixing due to a
two-body neutron-proton force which reproduces
the experimental mixing quite well. In this Let-
ter we report the observation of this configura-
tion mixing in a different region of deformation
and, in particular, between two K"= 5 bands of
250Cf

From an initial investigation' of the electron
capture decay of 8.6-h ' Es, K' = 5 bands based
at 1396 and 1478 keV were identified. Although
definite spin-parity assignments were possible in
this study, ' the configurations of these states
could not be uniquely determined. A portion of
the decay scheme showing primarily the high E
states of '"Cf is given in Fig. 1. From single-

particle-level systematics the only probable two-
quasiparticle configurations for these states are
(&'[620]n;~2 [734]nt, , f2'[631]n;~2 734]n), , and

(& [521]p;~2'[633]pj, . Since+2 [734]n is the
ground-state configuration of "'Cf and the~2'[633]
proton orbital is the ground state of "'Bk, the
neutron and proton transfer reactions into the
'"Cf final nucleus should aid in delineating the
correct Nilsson orbital assignments. The reac-
tions '4'Cf{d, p)'"Cf and "'Bk(o., t)'"Cf were
therefore studied to deduce the configurations of
these K' = 5 bands.

The charged-particle transfer experiments
were performed using 12-MeV deuteron and 28-
MeV a-particle beams from the Argonne FN ta.n-
dem Van de Graaff accelerator. Reaction prod-
ucts were analyzed with an Enge split-pole mag-
netic spectrograph, and the particles were re-
corded using nuclear emulsion plates. Targets
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FIG. 1. Decay scheme of 8.6-h 5 Es showing high K
states of Cf. The level energies and spin parities are
based on Ref. 7 and the two-quasiparticle configuration
assignments are deduced froxn this work and Ref. 8.
The labels for the K"=5 bands represent the dominant
configurations.

were prepared using the Argonne electromagnet-
ic isotope separator by deposition of the actinide
ions on 40-II,g/cm' carbon foils. Spectra from
the reactions '"Cf(d, P) and "9Bk(n, t) are shown
in Fig. 2. It is evident from these spectra that
the K"= 5 bands at 1396 and 1478 keV are popu-
lated in both reactions. Since the (cI, t) reaction
can only populate two-quasiproton states in an
even-even nucleus and the (d, p) reaction will pop-
ulate only two-quasineutron states, it is also ap-
parent that these bands must be of mixed charac-
ter. Additional evidence for configuration mixing
between these states is adduced from the y-ray
branching observed following the 8.6-h ~' Es de-
cay. ' The intense transition between the 5 states
can occur only if these states have a particle
common to both or if there is strong configura-
tion mixing between them.

The ground state of "'Bk has been established'
to be the+'[633] Nilsson state. Hence one compo-
nent of the two-quasiproton states populated in
the reaction "'Bk(c7, f )'"Cf must be the ~2'[633]
orbital. As pointed out earlier, the spins and
parities of all the states shown in Fig, 1 have
been deduced from radioactive-decay data. ' The
composition of the K'= 5 state at 1396 keV must
be P, '[633]P;—', [521]p)5, because no other proton
orbital can combine with the ++[633] state to pro-
duce a K'= 5 band at this low excitation energy.
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FIG. 2. Spectra from the reactions 24~cf(d p)250cf and Qk(n, t)~5 Cf.
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The K' = 2 octupole band at 872 keV, known from
radioactive-decay studies, ' is also populated in
the (n, t) reaction, since this band contains a
large p, '[633]p; —', [521]p]., two-quasiproton com-
ponent.

From n-decay studies' the "'Cf ground state
is known to be the~2 [734] single-particle orbital.
Thus any two-quasineutron state excited in the
neutron transfer reaction must contain the~2 [734]
orbital as one component. The E'= 4 and 5

bands at 1255 and 1478 keV which are populated
strongly in the reaction "'Cf(d, P)'"Cf must have
one neutron in the + [734] orbital and the other
in a K' = —,

"orbital. Only two K" = —', ' single-par-
ticle states are available at low excitation en-
ergy: the 2'[620] particle state (U'-0. 97) and
the —,'[631] hole state (U'-0.03). Since the (d, p)
reaction cross section is directly proportional to
U', the orbital to which the neutron is trans-
ferred must be the —,''[620] state, and the config-
urations of the 1255- and 1478-keV states can on-
ly be f4 [734]ni z'[620] n&4- and (4 [734]n' "-
[620]n), , respectively. Additional support for
the above assignments of the two-quasiproton and
two-quasineutron states comes from the excel-
lent agreement between the experimental and cal-
culated relative cross sections to various mem-
bers of the rotational bands. The detailed analy-
sis of two-quasiparticle states of "'Cf will be
published elsewhere. '

For the case of only two interacting configura-
tions the unperturbed energies, E, and E„of the
pure two-quasiproton and two-quasineutron states
and the interaction matrix element, 3R, may be
obtained from the following expressions":

Ea,r=2[Ei+. .Em]+ 2 [(Ei —E2)'+ 43R']'

a '/a„'=(E, —E )/(E, E-). (2)

In the above equations a~ and a~ are the mixing
amplitudes of the lower and higher states, and

E~ and E~ are quasiparticle energies. From the
'4'Cf(d, P)"'Cf reaction data the cross section
ratio [dc(1396)/dO]/[dc(1478)/dB] was measured
to be 0.234 +0.016. No excitation energy correc-
tions were made to the experimental cross sec-
tions, since distorted-wave Born-approximation
calculations indicate that any Q dependence of the
reaction for these states would be small. The
mixing ratio (a~2/a„2) given above, which is iden-
tical with the parameter y of Massmann et al. ,

'
was observed to be independent of angle and the
above value represents an average over the three
angles of measurements. The unperturbed energy
of the pure two-quasiproton state was calculated
to be 1411 keV, while the unperturbed two-quasi-
neutron state would be at 1463 keV. The meas-
ured interaction matrix element is 32 + 2 keV. As
noted by Massmann et al. ,

' this matrix element is
not very sensitive to changes in the mixing ratio
when the ratio is large but is more dependent on
the energy differences of the like-spin members
of the two bands. The value of the mixing ratio
derived from the (o., t) reaction is 0.19+0.08, in
good agreement with the value obtained from the
neutron transfer reaction.

It is important to compare the experimentally
determined mixing matrix element to that ob-
tained using the theoretical approach of Mass-
mann et al. .' For the case of parallel angular
momentum projections (i.e., 0= 0„+D„and Q~,
+ Q~ ) the interaction matrix element is given by

SR= l(U„,V„Up Vp + V„U„Vq Uq )(n+21 V„p In@,)

—(U, ,V, ,Vp, Up, + V„,U„,U~, V~,)(n, P, I V„~ In+, )l, (3)

where U; and V, are the BCS amplitudes, a bar
denotes a time-reversed state, and V„~ is the ef-
fective neutron-proton potential. In the present
study 0„, 0„, Q~, and Q~ denote the+ [734]n,
—,'[620]n, ~2'[633]p, and —,

' [521]p orbitals, respec-
tively. The pairing factors were calculated using
the gap parameters (b „~= 650 keV), which are in
good agreement with values obtained from the
two-quasineutron and two-quasiproton energies
of "Cf, and the one-quasiparticle energies for
this mass region as given by Ellis and Schmo-

rak. " The pairing-strength parameters G„(G~)
were adjusted so that the BCS calculations repro-
duced the experimental pairing-gap parameters.
The off-diagonal V„~ matrix elements calculated
with Force I (r, = 1.5 fm) and Force II (r, = 1.0 fm)
of Ref. 6 are (~2

—', IV„~ I , ~2), = —131.8 an-d —70.0
keV and (~~2 IV„~ I2 2), = —60.0 and 16.4 keV, re-
spectively. These matrix elements yield 3Q= 27.3
keV (Force I) and SR= 21.7 keV (Force II). In the
present calculation, Coriolis effects were also
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considered. The inclusion of Coriolis coupling of
the K„„'=4 (1255 keV) and 5 (1478 keV) bands
in the calculation increased the mixing matrix el-
ements by 1.4 and 1,1 keV. The total mixing ma-
trix elements, including Coriolis effects, are
28.7 keV and 22.8 keV for Forces I and II, re-
spectively. The experimental value of 32 + 2 keV
is in better agreement with the value calculated
with Force I. However, in the case of the rare-
earth nuclei' Forces I and II enjoyed nearly equal
success in reproducing the experimental mixing
ratios. Thus the experimental data presently
available do not allow one to decide which force
defines the residual neutron-proton interaction in
a more realistic way.

In summary, the present study shows that the
phenomenon of configuration mixing through the
off-diagonal V„~ interaction occurs in actinide as
well as rare-earth nuclei. Hence, an understand-
ing of this residual interaction is important in ex-
plaining the level structure of deformed nuclei.
By examining more nuclei, it should be possible
to establish the nature of the effective neutron-
proton force.
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Several new isomeric states above the well-known (hey2) 8+ level have been observed in
~po. They can be accounted for by simple weak couplirg between two-particle or

two-quasiparticle states found in the closed-shell nuclei "po and '" '" '"pb.

Even-mass Po isotopes from mass number 200
to 210 have an isomeric 8 state which is believed
to result from the n'(hQI, )2 configuration. ' ' How-
ever, no higher spin states were known in the
lighter Po isotopes analogous to the high-spin
particle states in the closed-neutron-shell nucle-
us "Po' or the neutron quasiparticle states in
nearby Pb isotopes with the closed proton shell. '"'

In thj. s work the nuclei ~ ' ' Po have been
studied by in-beam spectroscopy. With Ge(Li)
detectors, y-y-t coincidence spectra, y-ray an-
gular distributions, and y spectra time-related
to the cyclotron beam bursts were obtained. Con-
version electrons were measured with a broad-
range electron spectrometer consisting of a
steering magnet and a cooled Si(Li) detector. s
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