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Using two models, @re study the relaxation to a Maxwell distribution in the context of
classical kinetic theory. For the first model, an exact solution of the nonlinear Boltz-
ma~~ equation is derived. For the second model an asymptotic solution exhibits the re-
markable feature of a transient tail population sometimes-much larger than the equilib-
rium Maxwell distribution. This phenomenon may be of importance for calculating rates
of fast chemical reactions and for controlled thermonuclear fusion.

In this Letter, we report some preliminary re-
sults on the relaxation of nonequilibrium distribu-
tion functions to Maxwellian form. ' Qur interest
is centered on behavior in the high-energy tail
of the velocity distribution. Modification of the
tail away from a Maxwell distribution can signif-
icantly change calculated values of certain gas-
phase reaction rates, at given kinetic tempera-
ture, e.g. , in pulsed devices for hydrogen fusion.
Depletion of the Maxwellian tail has also been
suggested" as an explanation for the discrepan-
cy between observed and predicted fluxes of so-
lar neutrinos.

We study two models, both classical and non-
relativistic. The system of interest here is an
infinite, spatially homogeneous and isotropie gas
with one species of molecule. It is assumed that
only binary elastic scattering need be taken into
account, so that the Boltzmann equation applies.
In general, the elastic differential cross section
o' is a function of relative velocity g and of scat-
tering angle X in the center-of-mass system.
For the first model, we assume that o is propor-
tional to g ', in the second model o' is propor-
tional to g '. For definiteness, we assume in
this Letter that the scattering is isotropie; i.e.,
o is independent of X. Actually, introduction of
an arbitrary angular distribution leads to only

slight complication.
For the first model, we have found an exact

solution of "shock transition" type for the non-
linear Boltzmann equation. This solution per-
mits an analysis of the relaxation process for all
velocities including, in particular, formation of
the Maxwellian tail. Furthermore, guided by the
form of solution for the first model, we find an
asymptotic solution for the second model. This
asymptotic solution exhibits the remarkable fea-
ture that the far tail population is for some time
significantly larger (up to a factor 6) than the
equilibrium Maxwell distribution.

Maxwell' established thai the low-order mo-
ments of the distribution function effectively re-
lax to their equilibrium values in just a few mean
collision times. This corresponds to the proper-
ty that the low-energy part of the distribution at-
tains Maxwellian form in such a time interval.
Although implicit in Maxwell's classic paper,
this result appears first to have been stated ex-
plicitly by Jeans. ' Nonlinear relaxation has also
been discussed by Kac.' The effects discussed
here are not related to those of Widom. '

The state of the gas at time t is described by a
distribution function nf (v, t), where n is the con-
stant number density, v is a velocity variable,
and v = tv~. Conservation of mass and energy im-
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ply that

Jf (v, t) d3v = 1,
J v2f (v, t) dsv = 3kT/m = 3P2,

where T is the constant kinetic temperature, m
is the molecular mass, and k is Boltzmann's con-
stant. Also, as t -~, f(v, t) tends to the Max-
well function

T = 4'FRKt (4)

For our first model, we choose the differential
cross section o for elastic scattering to be

(3)

where a' is independent of both g and X. lt is now
convenient to introduce the dimensionless time
variable

exp(- v'/2P')
(2+P2)3/2 (2)

which measures time in units of mean collision
time. With the cross section (3) the Boltzmann
equation can then be written (using standard nota-
tion) in the form

af(v 7) 1, ~ . 2w=-f(v, ~)+ —Jd'w J dysinx J deaf(v', r)f(so', ~), (5)

with

v"=z(v'+w')+2(v'-co') cosy+ iv&& w( sing cos&

and

w" = » (v'+m') -2 (v'-m') cosy —iv&& wi sing cosa .
Normalized moments M»(v) of f are defined by

the equation equation

(6)

(7)

(13)

4=0, 1, 2, . . . .

It follows from Eqs. (1) and (2) that

Under the transformation

Eq. (13) reduces to the form

(14)

and

M»(~)=1, @=0,1, 2, . . . .

8$ Bp
+ —+y'= 0.

~X 7 ~X (15)

Multiplication of Eq. (5) by v' and integration
over v space leads, after some manipulation, to
the infinite sequence of moment equations

dMg, 1
+M»=

1 QM M»j + m=0

@=0,1, 2, . . . .

Since we do not truncate this infinite sequence of
equations, no information is lost in taking mo-
ments. In other words, (11) is equivalent to (5).

The form of these equations suggests that we
introduce the generating function for the, normal-
ized moments

(12)

y = x 'z (q), rl = lm +cT,

where c is a constant still to be determined. lt
then follows that Z =z', regarded as a function
of z, satisfies the first order equation

cZ dZ/dz +(1-c)Z -z(1-z) = 0. (17)

Boundary conditions corresponding to Eqs. (9)
and (10) determine that

C=-1
6

and therefore the explicit solution of Eq. (17),

(19)

The structure of Eq. (15) suggests that we seek
a similarity solution of the form

Then G($, v) satisfies the partial differential It is easily shown that this solution corresponds
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to the distribution function

exp(- v'/2KP') (5K —3) (1 -K) v'
2 (2s'KP') K K P'

where

Z =1-e-""
As a distribution function, f must be nonnegative. Therefore K) —,', or

7) 70=6ln 2 5.498.

The second model is characterized by the differential cross section

&(g, x) =Itp'/g',

(20)

(21)

(22)

(23)

where w is again independent of g and X. We have not been able to find any nontrivial exact solution
for this case. However, an asymptotic solution for v- is readily obtained.

For large v, we introduce the approximation of setting w=0 in Eqs. (23), (6), and (7). The Boltz-
mann equation reduces to the form

f(v v')+2 -fl v( ) v'i f1 v( )
v'

i

"g ~ (24)

This nonlinear equation admits an explicit solu-
tion of the form

f(v &)=f(v ")e '(1-'-'K+"V)
where

g = (45/22T)v'/p'.

(25)

(26)

More precisely, Eq. (25) is an asymptotic solu-
tion of the Boltzmann equation with the cross sec-
tion (23), in the limit of large v and large r, such
that the variable f is fixed.

In Fig. 1, we plot the ratio E(f) =f (v, r)/f (v, ~)
given by the explicit formula (25) as a function of

We note the rather large peak around f = 2,
with maximum value of 6.1922 for E. There is
also a deep valley near f =0.25, with a minimum
value of 0.064808. The presence of the peak im-

plies that, under certain conditions, transient
chemical or nuclear reaction rates may attain
values substantially larger than mould be expect-
ed from the Manvell distribution.

As mentioned earlier, both models can be gen-
eralized to permit arbitrary dependence of the
cross section 0 on scattering angle X. For the
first model, the only modification thereby intro-
duced is a change of the time scale. For the sec-
ond model there are, in addition, changes in the
shape of the curve for E(f). However, there is
always a peak and a valley, with the peak value
of I' at least 3.1516 for any angular distribution.

One of us (T.T.W.) thanks Mr. Franklin F. K.
Chen for helpful discussions.
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FIG. 1. Invariant shape of transient tail distribution
for the second model.
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