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relevant for the collapsed object (neutron star'?).
I have argued that the coherent reaction (vi) does
not degrade the escaping neutrinos, even though
the scattering cross section for vP - vp and vn- vn in the core is large (because of spin- —,

'
and

isospin- —,
' effects, it is some 13-14 times larger

than what one obtains by simply putting A = 1 in
Freedman's formula for S=I=0; see Bernab(~u"
and Tubbs and Schramm". R.H. v's may scatter
even more strongly. While the v's will still get
out with little energy loss (though some may be
trapped), if their interaction with the core is
strong enough, they can carry away angular mo-
mentum. What effect this may have on the enve-
lope and in particular on the rotation of the sub-
sequent neutron star is a question to be investi-
gated elsewhere.
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We generalize the droplet model introduced by Ackerson et al. to make it consistent
with scaling laws for the free energy. We then use the model to predict a logarithmic di-
vergence of the shear viscosity, in agreement with mode-coupling theories and experi-
ment. We also study non-Newtonian (finite-shear-gradient) effects on the viscosity.

Recently Ackerson et al. ' presented a simple
droplet model for the Rayleigh light scattering
spectrumof fluids near the critical point. They
took a droplet size distribution of the form

critical point; $ is the correlation length, and q
is the exponent introduced by Fisher' to account
for deviations from Ornstein-Zernike theory. lt
is defined by the asymptotic form of the pair dis-
tribution function:

where B varies slowly with temperature near the G(r) r+"-' at T= T, . (2)
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The second assumption made by Ackerson et al.
is that the density profile of a droplet of size l
is given by

n(r) = A exp(- r'/l') . (3)

N(l) = Bh(l/$)/l ", (4)

while n(r) —n, is a homogeneous function of l and

n(r) —n, = +Af(r/l)/l". (5)

We require that the functions h and f fall rapid-
ly to zero when their argument is larger than 1.
A. and B are constants. The plus and minus signs
in Eq. (5) refer, respectively, to droplets and

bubbles, which should be present in equal pro-
portions. A positive value for x allows small
droplets to be more than a scaled version of the
large ones. The model of Ackerson et al. corre-
sponds to the assumptions that h and f are Gauss-
ian and that x=0 while y=5+q.

We now assume that the droplets contribute in-
dependently to the total free energy of the sys-

From these two assumptions [Eqs. (1) and (3)],
Ackerson et al. were able to calculate both the
total light scattering intensity and the Rayleigh
linewidth, and found good agreement with experi-
ment. '

We show here that a simple generalization of
Eqs. (1) and (3) is necessary to treat in a consis-
tent fashion the free energy of the system and
the higher-order cumulants of the density. With
this generalization, the good agreement for total
intensity and Rayleigh linewidth is retained, and
in addition the behavior of the shear viscosity
near the critical point may be predicted from the
model.

We consider the droplets to be fluctuations
about the mean density, rather than fluctuations
in the vacuum. Thus there will be equal numbers
of droplets and "bubbles, " corresponding respec-
tively to regions with densities higher or lower
than the mean density. The analog for binary mix-
tures is droplets rich in one or the other mixture
component, while for magnetic systems droplets
correspond to regions with a net excess of up or
down spins. For simplicity we will deal with the
critical isochore, n = n„although the theory may
be applied easily to other regions in the phase
plane.

We generalize Eqs. (1) and (3) by assuming in-
stead that N(l) is a homogeneous function' of l

and g:

F(H~" ) f-d=zz «h(z)F, (H~4 "~' ")

However, the known equation of state has the
form'4

F„,=Ca "F(H/e ),

(10)

where e —= (T —T,)/T„n is the exponent for the
specific heat C~, and 6, the gap exponent, is giv-
en by P+y, where P is the exponent describing the
shape of the coexistence curve, and y is the ex-
ponent for the isothermal compressibility. If we
compare Eqs. (9) and (11) and use scaling laws
we find

y=d+1~

x=-,'(d —2+q). (12}

This method of choosing exponents by requiring
the free energy to have the proper scaling form
is similar to the approach used by Binder, Stauf-
fer, and Muller-Krumbhaar, 4 in studying a differ-
ent kind of droplet model for the kinetic Ising lat-
tice.

With Eq. (12), Eqs. (4) and (5) may now be used
to study the static and dynamic properties of the
system. The pair distribution function depends
only on the combination

y+2x=2d —1+'g
~

a relationship which is satisfied by the choice
made by Ackerson et al. ,

'
y = 5+@; x=0 for d =3.

With the choices made in Eq. (12) the structure
factor has the scaling form"

I(k}~k ""D(k)). (12a)

tern, so we may write

F,o, =f dl N(l)F, ,

where E, is the free energy of a droplet of size l.
For simplicity, we look first at the magnetic
case, although the situation for fluids is complete-
ly analogous. I', depends on the magnetic field II
only through the coupling of the excess up (or
down) spine to H. The number of excess spins
corresponds to

fd'r [n(r) —n,J~ l (7)

where d is the dimensionality of the system.
Thus we have

F, = Fi (H/" ")

F„,=BJ dl l 'h(l/$}F, (Hl~ ")

—B~- «+ ~F(Hg~-«)

where
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If k and f are chosen to be Gaussian, as Acker-
son et al. assume, one obtains one of the modi-
fied Ornstein-Zernike forms for I(k) suggested
by Fisher and Burford"

I(k) ~ (k2 i ( 2) 1+ if/2 (12b)

Renormalization- group calculations' show, how-
ever, that D(x) must be more complicated than
the form implied by Eq. (12b). The results of
Ref. 1 for the Rayleigh linewidth are unchanged.
A difference between our work and theirs arises
though, if one looks at higher-order cumulants
of the density. For distances r, &

all of order $,
the relationship"

(b,n(r, ). . .An(r2„)), - [(b,n(r, )hn(r2)) ] (13)

is satisfied only by the choice of x and y in Eq.
(12).

We turn now to the most important new result
of the present paper: the determination of the
shear viscosity near T,. Suppose the background
viscosity (in the absence of droplets) is q, . The
viscosity g of a dilute suspension of droplets has
been known for some time'; it is given by

gQ + Cgg (14)

where C is a dimensionless constant of order uni-
ty and y is the volume fraction of the droplets.
For our model

(15)

where k, is a cutoff preventing diverging contri-
butions from very small droplet sizes l. This
gives

(q —q,)/7), -ink, &.

This logarithmic divergence is also predicted by
the zeroth-order form of mode-coupling theory'
and is in good agreement with experiment. e In
the extreme critical limit q will become so large
that interactions between droplets can no longer
be neglected. In this limit our simple model will
certainly break down, and one must use other
methods, such as those based on the renormal-
ization group. We note that the most recent re-
normalization-group calculations' suggest a very
weakly diverging shear viscosity, with an expo-
nent of about 0.04 in three dimensions; such a
weak power-law dependence will be extremely
difficult to differentiate from a logarithmic di-
vergence. In order to obtain the coefficient of

the logarithmic term in Eq. (16) (given by, z' in
the mode-coupling theory), one would need to
know the value of the constant B in Eq. (4); this
would require going beyond the postulate of homo-
geneous functional forms of Eqs. (4) and (5) to a
derivation of these equations and the constants
appearing in them.

Finally, we discuss the non-Newtonian shear
viscosity, that is, the effect on measurements of
g arising from a finite shear gradient D. A di-
mensionless parameter enters into the droplet
suspension theory'.

k '= qDl-/o, (17)

l s (k~T/q, D)'i'. (19)

As a result, the upper limit to the integral in Eq.
(15) should be of order (k~T/q~D)'i'. For g

«(k, T/rT, D)'i' the value of the integral will be
unaffected, but when

$-(k~T/q D)' '

the shear viscosity will level off to a constant val-
ue, and the logarithmic divergence will stop.
This is the same behavior predicted by one of us"
using mode-coupling theory; the same dimension-
less quantity k, T/q, D)' appears in that theory
and determines the temperature at which the log-
arithmic divergence will level off to a constant.

The dynamic droplet model, simple as it is,
appears to give rather accurate predictions for
a wide variety of problems, and therefore de-
serves further study. In particular, we plan to
use the model to investigate the bulk viscosity
and sound attenuation near the critical point.

We are grateful to K. Freed and S. A. Rice for
support and encouragement.
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where l is the size and 0 is the surface tension of
the droplet. When D is large enough so that k '
is of order unity, the droplet surface tension is
no longer strong enough to prevent the tearing
apart of the droplet by the shearing forces. Since
o-kBT/&', we have

k '-q~Dl'/kBT.

Thus the only droplets that survive to contribute
to the increment in shear viscosity are those for
which
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Recent energy-loss and photoemission-partial-yield studies of (spin-orbit-split) d-core
to surface-state transitions imply relative transition probabilities for the d5&2 and d3&2

components differing from their orbital degeneracies. This has previously been inter-
preted. as implying s character for the unoccupied surface states of GaAs(110). I present
an alternative explanation for this effect assuming only p character for these states and
a small exchange interaction.

Recently electron-energy-loss-spectroscopy' 3

(ELS) and photoelectron-yield-spectroscopy' '
(PYS) techniques have been used to probe unoc-
cupied surface states on semiconductor surfaces.
The main content of most publications thus far
has been to establish transition energies and from
these to infer one-electron energies and a density
of states for the unoccupied levels. However, re-
cent publications have attempted to go beyond
this and study the nature of these states. Thus
far it has been established that in III-V semicon-
ductors these states are localized about the cat-
ion"' and depend upon the crystal face,"that a
strong decay mode for these d-core to surface-
state excitations is direct recombination, ' that
these transitions are dependent upon the polariza-
tion of exciting photons, and that in some in-
stances a metallic overlayer does not appear to
perturb these states. " An attempt to determine
the orbital nature of these states (based on the
relative transition probabilities for the d,&, and

d», to surface-state excitations studied by ELS)
recently appeared, ' and it is this question that I
wish to address. In particular, I shall offer an
alternative explanation of the observed intensity

ratios which has very different implications as
to the orbital character of the surface states. To
properly define both the data and the interpreta-
tions I shall first discuss in greater detail the
experimental techniques employed and the transi-
tions studied.

Both ELS and PYS study the probability (as a
function of excitation energy) for exciting a core
3d electron into an unoccupied surface or bulk
state. In EI S the excitation energy is provided
by.an electron, whereas in PYS the transition is
excited by a photon. In the photoexcitation case,
dipole selection rules are valid. T.his has two
effects: (1) There must be a one-electron dipole
matrix element coupling the core d electron to
the surface state, i.e., the method will probe on-
ly that portion of the surface state having P- or
f-orbital character with respect to the origin of
the d core level (as well as nonzero overlap with
the d core level), and (2) since the initial state
is d'o ('S), the final (ten-electron state) must be
d'(surface state)' ('P). We shall neglect any par-
tial-f-wave character of the surface state ELS.
will satisfy these (dipole) selection rules at a
sufficiently large primary electron energy, E~,
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