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Various techniques of coherent averaging in NMR are applied in time sequence and the
transient signal is doubly Fourier analyzed. The result is a two-dimensional NMR spec-
trum in which dipole-dipole spectra of spins having slightly different chemical shifts are
separated from one another. The results are useful for determination of atomic positions
in solids.

where b„k=ysylhr„k 'P, (cose„k) contains the struc-
tural information. The I spins, because they are
abundant, interact among themselves through

X =Q Qb, (I„.I, —3I,„I„). (2)
l

We report here the experimental demonstra-
tion of an NMR technique which may be generally
useful in the determination of atomic positions in
solids. ' It has long been known that such informa-
tion resides in the nuclear magnetic dipole-dipole
interactions. While in liquids these interactions
are motionally averaged to zero, there are so
many such couplings in solids that the NMR spec-
trum, except in a few special cases, 3 has an un-
resolvable "wide-line" character. In principle
the structural information is extractable via
ment analysis, ' but the difficulties, both exper
mental and theoretical, of obtaining higher-or
moments preclude the application of this meth
to most solids.

We consider the spectrum of relatively dilut
spins S which are coupled to abundant neighbo
spins I through the interaction

In addition the S spins have chemical shifts 5,„
which might be resolvable in the absence of I-S
dipolar broadening4:

K~s =Q„h„s . (3)

I S +n +k nk kk kkS

Now we imagine giving the S spins an initial
transverse polarization (S+(0))=(S„)+i (S,) at

der
time zero which is then allowed to decay in two
stages. In the first time interval, t„a line-nar-
rowing irradiation is applied to the I spins result-

g in a suppression of Ksl md in a scaling of Xlsring
by a factor K. Then K» is suppressed in the sec-5

ond time interval, t„by strong resonant irradia-
tion of ther spins while the remainder of the S
free induction decay is recorded. ' The signal ob-
served at t, +t, has the form

(S,(t„t,)) = (exp [i(X~s+ n Kls)t, ] exp(i K~st, )S,exp(- i K~st, ) exp[ - t(K~s + K K„)t,]).

Making use of S+ =Q„s+„and the local-field form of X~s and X», Eq. (4) is readily simplified to

g(t„t,) -=(S,(t„t,))/(S,(0, O)) =Q„exp(t [b „t + (b. „+D„)t,] I

(4)

with D„=—2k+kb„km» where m„ is the magnetic quantum number of the hth neighboring I spin of S„.
A Fourier analysis of g(o, t, ) with respect to t2 gives the pure chemical-shift spectrum f(v, ) of the

S system; a similar analysis of g(t»0) with respect to t, yields a sort of "wide-line" spectrum, f(co,),
from which the effects of the I-I interactions have been removed. Two-dimensiona1 Fourier ~alysis'
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yields an array, f(&u»&u, ), from which dipolar
spectra of each S spin can be separated.

The experiment was performed on a small sin-
gle crystal of calcium formate, Ca(HCO, )» of
Po isotopic abundance in "C, and doped with - 0.1
at %.Mn++ to shorten the proton spin-lattice re-
laxation time. The pulse sequence is shown in
Fig. 1. The "C spins (S) were initially cross po-
larized using the protons (I).~ During t, =Mt, a,

Waugh-Haber-Haeberlen four-pulse sequence'
was applied to the protons with a cycle time t,
= 45 p, sec to suppress the I-I couplings. During
t2 the I spins were continuously irradiated with
an rf field lJ, =15 6, and the complex "C signal
was sampled at 32-@sec intervals. Signals were
averaged, and the process repeated for N = j.,
2, . . . , 20.

A two-dimensional transform of the data is
shown as a contour plot in Fig. 2, The pure
chemical-shift spectrum f(u2) is shown vertically
along the side, and the distored "wide-line" spec-
trum f(v,}, obtained by summing vertically, is
shown along the top. The following features are
evident: (1)f(v,) itself shows some detail because
the sample was a single crystal and because the
spin Hamiltonian has a pure "local-field" char-
acter during t„(2) dipolar splittings are observed
in f(ru„+2), each being symmetrical along the &u,

axis about the locus cu, = u&, = b,„; (3) the observed
splittings range from 1.1 to 12.3 kHz for HCO,
ions in various orientations in the unit cell; and
(4) only seven rather than the expected eight lines
are observed.

Using the known "C shielding tensors, ' and tak-
ing account of the experimentally deter mined
scale factor v =0.53, we performed a computer

search to determine the direction (initially un-
known) of Ho in crystal coordinates. Initially the
C-H vectors were assumed to be of length 1.09
a.u. and to lie in the directions appropriate to the
symmetry of the isolated HCO, ion. The chem-
ical shifts were reproduced easily within experi-
mental error, but substantial errors remained in
the dipolar splittings. The C-H directions were
varied keeping AH = 1.09 a.u. and obeying the
symmetry restrictions of the I'„~ space group.
The residual errors werb minimized when the
direction cosines of r~H, in a coordinate system
with the x axis along the C, axis of the CO, group-
ing and the z axis in the COO plane, were (- 0.998,
0.025, 0.044) and (-0.995, 0.027, 0.094) for the
two inequivalent classes of HCO, in the unit cell.
These directions represent bendings of 2.9' and
5.5 away from the free-ion direction.

We reported earlier an alternative method' that
differs from the present one in that I-S couplings
manifest themselves in an oscillatory spin ex-
change, arising from terms of the form b„~I,„S,„.
These terms appear under double-resonance con-
ditions when the Hartmann-Hahn condition is es-
tablished. ' That procedure, besides being exper-
imentally more difficult, suffers from two defects
as a result of the form of the effective coupling
Hamiltonian. The first of these is that the de-
sired parameters, b„~, are not directly obtained
from spectral splittings but must be related to
the latter by detailed calculation. The other is
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FIG. 1. Schematic diagram of the experimental pro-
cedure showing time-dependent rf fields and magnetiza-
tions.

FIG. 2. Contour plot of function f(~,~~). Dipolar
splittings for each of the observed seven lines are in-
dicated by the heavy lines. The line bisecting the split-
tings is the locus ~&=cu2=~„. (The zeros of the two
indicated frequency scales are different and arbitrary.
Chemical shielding increases from top to bottom and
from right to left. )
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that the eigenfrequencies exhibit a tendency to-
ward "locked modes, "e.g. , an 8 spin coupled to
two I spins will exhibit a single eigenfrequency
equal to the root mean square of the individual
coupling strengths. For these reasons, and

others, ' we believe that the present approach has
greater promise for the determination of the lo-
cal geometrical structure of solids.

We are indebted to V. R. Cross for help in the
analysis of data.
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I prove that the ground-state energy of an arbitrary system of nonrelativistic spinless
Bose particles increases when any (arbitrarily strong or inhomogeneous) magnetic field
is turned on.

Let

H(a) =-g (2p,) '[V, -fe, a(x,.)]'

+ Q v,„(r,—r„. ) +L v~ (r, ),

(q,H(0) q) ~ (y,H(a) y) (2)

for all g, for (2} is false) Equation (2) would

imply an inequality on all eigenvalues but it is
obvious that in the case n = I, and v spherically
symmetric, energies of l ~ 0 states decrease in
lowest-order perturbation theory for a suitable
choice of a. This remark shows that the theorem
fails for fermions for the v;,. can be chosen zero t

Note also that various analyses' of explicit ex-

where a, v,~, and v,. are arbitrary real-valued
functions. My goal in this note is to prove the
following elementary fact that appears to have
escaped previous notice:

Theorem. =As an operator on either all square-
integrable n-particle functions or on functions
with Bose statistics on all of the particles, H(0)
has a smaller ground-state energy than H(a).

I emphasize that this result is not coming from
a general inequality

amples of H(a) have noted the occurrence of an
inequality E(a) ~ E(0) in these explicit examples.

I will prove the inequality

(lyl, H(0)lyl) - {y,H(a) q). (3)

E(a) = inf ($,H(a)g) ) inf(lgI, H(0)ill)

inf (gH(0)(p) =E(0).

Notice that (3), unlike (2), does not imply any-
thing about excited states because f-gl destroys
orthogonality. In addition, ('3) tells us nothing
about the fermion case since g-Igl destroys
Fermi statistics.

The inequality (3) follows from a more general
inequality' of Kato proven for different purposes.
By borrowing only part of his proof one can show

(3) easily'. Since Igl'=g*P, then with 3n-dimen-
sional gradients,

lql Iv I qll = IRe(gravy)I=IRe[g*(v -fa) g]l

- lgll(v-ia)yl.

Thus Ivlgll'(&) l(v —&a)&I'(&)»tegrating over x

Equation (3) implies the theorem by the variation-
al principle,
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