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Saturation of the Gentle Bump Instability in a Random Plasma
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It is shown that as a result of density fluctuations, the phase velocity domain of the
gentle bump instability can be greatly broadened, leading to a different saturation of the
instability. A part of the beam is accelerated and the turbulence power at saturation is
lowered.

It has recently been pointed out that the growth
rate of a high-frequency instability can be modi-
fied by a nonresonant interaction with low-fre-
quency turbulence. "' This effect is qualitatively
similar' to the effect of density fluctuations on
the spatial growth of an instability. The following
investigation of the gentle bump instability in the
presence of random inhomogeneities describes
the saturation of this instability in the presence
of nonresonant low-f requency turbulence. The
saturation process presented here is different
from the saturation of the gentle bump instability
in the presence of a coherent ion fluctuation'
which allows a part of the beam energy to be ab-
sorbed by the main plasma.

I consider a one-dimensional plasma with a
density n(x) =8+5n(x) fluctuating around an aver-
age density K. A fast beam (with mean velocity
u»va„ the thermal velocity), satisfying the
O' Neil-Malmberg4 criterion for the kinetic beam-
plasma instability, is streaming from the point
x =0 towards positive x. Provided that the typi-
cal scale for the density fluctuation is much
greater than the typical wavelength of the insta-
bility, a given frequency (d is related to a local
wave number k(m, x) given by

(u = Q(k((u, x),n(x)),

where Q(k, n(x)) = [~~'(x) + Sk'va, ']'I' (Bohm-Gross
relation) depends on x only through n(x). With
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the relation k(v, x) =K(v) +6k(co, x), where F(co) is
the average value of k(v, x), one obtains

6k((o, x) = 6n(x)k '/[6m%(ui)], (2)

provided that 5k(&u, x) «K(ru). For simplicity, 1st
us assume the domain of k of interest to be nar-
row enough to allow consideration of 6k as inde-
pendent of ur [and thus write it 6k(x)]. Let y(6k)
be the probability distribution of 5k, 6 be the
rms average of Ok, and l, be the correlation
length of the fluctuation. With the assumption
b, «k(co), one gets ~ =Q(K(co), m). The Landau
relation,

) { ( ))
Q (0 s(x)) Bf (x v)
Sk'v~'n(x) Bv

defines the spatial dissipation function of the in-
stability. c(x), a characteristic width of y(x, k),
is defined in the following way:

cr(x) = (y '(x)f"y(x,k)[k —k, (x)]dk j'
where y„(x) is the maximu~ of y(x, k) and k, (x)
is defined by y{x,k, (x)) =0. I now can give the
basic assumptions of this Letter:

b./I, «k, ',
b, »o(0),

y„(0)l,«1.
Inequality (4), where k, is a characteristic wave
number of the problem, is the WEB condition
(dk/dx«k'). Inequality (5) implies that for a giv-
en frequency v, the wave-number fluctuations
are larger than the typical width of the k spec-
trum of the classical gentle-bump-instability
growth rate, leading, as we will see, to a com-

!
pletely diff erent average growth rate. According

dN(x, k(ra, x))/dx =y(x, k(co, x))N(x, k(v, x)).

to inequality (6), the spatial growth of the insta-
bility must remain smaller than 1 for a distance
of the order of the spatial fluctuation correlation
length. It is a sufficient but non-necessary con-
dition and the same final result can be found af-
ter some tedious calculations with the less strin-
gent condition

y„(0)l, exp[y (0) l,][a(0)/6]'I'« l.
The nonlinear evolution of the spatial gentle

bump instability is characterized by the quasi-
linear diffusion equation" '

v —(x, v) = D(x,—v) f (x,—v),Bf 8 8

Bx 85 85

where f is the total distribution function of the
beam-plasma system and D(x, v) is the diffusion
coefficient of the instability. The WEB condition
(4) allows the description of the turbulence in
term of plasmons. ' Then the diffusion coefficient
becomes'

D(x, v) = (w/$, )(e/m)'k'(v, x)N(x, k'(v, x)), (8)

where N(x, k) is the plasmon occupation number
and k'(v, x) is defined by vk'(v, x) = Q{k'(v, x),
n(x)). The quantity k'(v, x) fluctuates and can be
written k'(v, x) =k'(v)+5k'(v, x). The quantity
k'(v) is given by vk'(v) =Q{k'(v), n).

The problem here is to calculate the evolution
of (f(x,v)). Averaging Eq. (8), one has to evalu-
ate (D(x, v)Bf (x,v)/Bv); that is, to calculate

A (x, v) =(N{x,k'(v, x))(8/Bv) f (x, v)).

Let us follow the motion between x =0 and x =x,
of a group of plasmons of frequency ru =Q(k'(v,
x,),n(x, )) interacting with the particles. Their
density in phase space is given by N{x,k(v, x)).
The spatial variation of N is given by

(10)

(12)

A(x, v) ={M{x,v)8f{x,v)/Bv) =(M(x, v))8{f (x,v))/Bv ={N(x,k'(v))) 8(f(x,v))/Bv.

Let us take the initial noise to be a white noise N, Then integ. ration of Eq. (10) yields

N{x„k'(v,x,)) =N, exp( f 'y(x, k'(v) + 8k'(v, x,) —6k(x, ) + 5k(x))dx}. (11)

A simple calculation gives Bk'(v, x,)/6k(x, ) = 3[&(v)/kD]'. As it was assumed that u»v@, k'(v) is much

less than kD and 6k' is negligible with respect to 6k. So one gets N{x„k'(v,x,))=N{x„k'(v)). Note that

N(x, k (v)) is a function of all the fluctuations between 0 and x, unlike 8 f/Bv which is only a function of

the fluctuation at point x. Taking into account the relation (6), one can calculate A(x, v) for x» I,. Con-
dition (6) implies that N(x, k'(v)) =M{x,v), where

M(x, v) =N, exp( f' y(x', k'(v) —6k(x) +8k(x'))d Jx

l is of the order of l„and is chosen such that one can neglect the correlation between the fluctuation
at point x and the fluctuations between 0 and x —/. As M(x, v) and 8f/Bv are uncorrelated, one gets
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Finally, one obtains the diffusion equation

v —(f(x,v)) =—(D(x, v)) —(f (x, v)),
B 8 B

Bx Bv B'U
(14)

where

(D(x, v)) = (ff/$, )(e/m)'k(v)(N(x, k'(v))). (15)

Following Coste et al. ,
' (N(x, k)) can be calculat-

ed. The spatial variation of the average number
of plasmons having a frequency + and a mean
wave number k, is

(U(x, k, )) =N, exp[ f y, (x', k, )dx'], (16)

where y, (x, k, ) =(y(x, k, +5k(x))). As long as o(x)
«6, y, (x, ko) has a simple expression

y, (x, k,) =o'(x)y (x)(dy/d5k)[k, -k'(v, )], (17)

where v, is such that 8(f (x,v, ))/8v =0. The growth
rate is centered around k'(v, )+b„, has a width b, ,
and a maximum which is about [o(x)/6]'y (x).
The average number of plasmons having a given
wave number k is simply related to (U(x, k, )) by

(N(x, k)) = fy(6k)(U(x, k —6k)) d(6k). (18)

From Eqs. (1V) and (18) we see that (N(x, k)) has,
a k spectrum width of the order of 6 as long as
a(x) ((b, .

All the previous equations can now describe
the saturation of the instability. I show in Fig. 1
the phase velocity domain of y(x, k'(v)), Z,(x,
k'(v)), and (D(x, v)) (x is chosen such that it is
large without being in the saturation domain of
the instability). In the case without fluctuations~',
D is nonzero only in the positive part of y, and
a plateau appears in the distribution function be-

tween the main plasma and the bump which is de-
stroyed. Unlike this case, here the whole beam
is subjected to a diffusive effect, the magnitude
of which is nearly constant over the beam width,
as a consequence of condition (5). This is be-
cause, due to the wave-number fluctuation, the
phase velocity of a given group of plasmons is
sometimes in the positive-slope part of the beam-
distribution function where it takes energy from
the particles and slows them down, and some-
times in the negative-slope part of the beam-dis-
tribution function where it gives energy to the
particles and accelerates them. Thus the first
effect of turbulence will be to make the average
beam-distribution function f, evolve according
to the equation

v 8f~(x, v)/8x =D,(x)8'f, (x,v)/8v',

where D,(x) is the diffusion coefficient. This cor-
responds to a heating of the beam. The width in
velocity space of the beam, hu(x), will grow, and
so will cr(x), the k-spectrum width of the classi-
cal bump-on-tail growth rate y, which is nearly
proportional to hu(x). Somewhat further, at a
certain point x„o(x,) = b, . Then the average ef-
fect on y(x, k) is no longer important and y, (x, k)
=y, (x, k), where', (x, k) is givenby Eq. (3) cal-
culated with n(x) =ff and f (x,v) =(f (x,v)). The
beam width is now b.u(x, ) =[6./o(0)]/bu(0). From
this point, the later evolution of the instability
becomes the classical quasilinear plateau forma-
tion. Comparison of the maximum growth rates
at x=0 and x =xo shows that during the beam
broadening the growth rate of the instability does
not appreciably change.

In Fig. 2 I show the evolution of the total dis-
tribution function. Because of the beam broaden-

f(0,v})i

f(0,v)"

(0.k(v))

r(0)
-"--.(D(x,v) &

k{v))

f{,v)"

U U+hU (Xo )

FIG. 1. Beam distribution function at x = 0 and y(0,
l7'(v)), y,(0,k'(v)), (D(x, vo versus e. x is a distance
between 0 and xp.

FIG. 2. Total distribution function at x= 0, x=xp and
at saturation of the instability.
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ing, the saturation turbulence spectrum will be
widened towards high phase velocities. As a part
of the beam particles are accelerated during the
beam broadening, the total saturation turbulence
power will be lower here than in the classical
case. The quantitative calculation of this power
variation is generally difficult. An approximate
value can be given when hu(0) «bu(x, ) & —,'u. The
ratio of the total turbulence power at the equilib-
rium with fluctuations to that without fluctuations
is then (4-r)/3, where r =[1+Au(x,)/u]'. For
example, in an experiment with parameters of
the same order as in the experiment' of Rober-
son and Gentle, I calculate that a density fluctua-
tion of 5% would lead roughly to a reduction of
the turbulent spectrum power at saturation by a
factor 3. The appearance of accelerated beam
particles in some beam-plasma experiments has
been explained' by an induced-wave scattering

process. This Letter shows that a few percent of
ionic random fluctuations yields the same result.
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We observe amplification of extraordinary waves which is interpreted as negative ab-
sorption of the relativistic magnetized plasma confined in a mirror machine. Experimen-
tal results are explained well by the relativistic kinetic theory with the assumption of an
isotropic peaked distribution, f (P) ~P exp(- c/T).

The possibility of negative absorption in a rela-
tivistic magnetized plasma has been suggested
by Twiss' and Bekefi, Hirshfield, and Brown. '
An expression for the absorption coefficient n
in the vicinity of the nth harmonic of the electron-
cyclotron frequency cop for extraordinary waves
was given in Ref. 2 where an isotropic-peaked
distribution function, f(p) ccp' exp(- e/T), was as-
sumed. (p and e are the momentum and relativ-
istic energy of the electrons, respectively, E is
a measure of the departure from a Maxwellian,
and T is the average kinetic energy of electrons. )
We observed the amplification of extraordinary-
mode microwaves transmitted through a relativis-
tic plasma during the heating period in a mirror
machine' and compared it with the theory of Ref.
2. Amplification for ordinary waves was also ob-

served but was rather weak. '
The experimental apparatus is shown schemati-

cally in Fig. 1. The relativistic plasma was gen-
erated in a mirror magnetic field by means of
electron-cyclotron heating. The heating micro-
wave power P „could be varied up to 5 kW and
the pulse duration was about 60 msec with a rep-
etition rate of ~ sec '. The ambient gas pressure
was about 2&&10 ' Torr. The electron plasma fre-
quency was determined by absolute intensity mea-
surement of the x-ray bremsstrahlung from the
plasma; it was less than 1.3 GHz with a heating
power of 1 kW. The average energy of the hot
electrons was about 30 keV as estimated from
the analysis of x-ray spectra. The probe micro-
wave power, amplitude modulated at 1 kHz, was
16 dBm (0 dBm =1 mw) and was applied to the
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