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~The result presented in Eq. (4) is valid for a stream
pulse that travels with uniform velocity through a uni-
form plasma; i.e. , a pulse which is a function of z and

t only in the combination Vt -z. It does not depend on
the assumption of an infinite plasma, although the de-
tailed forms of the various terms are inQuenced by the
presence or absence of boundaries.

These expressions were derived by neglecting the
j& x B term in Eq. (3). This is consistent with the re-
sults obtained: The stream is quickly current-neutral-
ized except within a thin shelI at its radius. When the
injected current is large enough to make the net cur-
rent in this shell significant, as is now being consid-
ered, the magnetic force causes the plasma electrons
in this shell to antipinch. Consequently, I&„ increases
and the critical current for magnetic self-focusing is
lowered below the value given here, IIowever, the con-
comitant increase in positive space charge in the shell
limits this process and keeps the critical current from
being lowered greatly.

23This result was derived, under the assumption that
a~p» 1, by comparing the expression for y found in
Ref. 6 with the expression for p obtained by use of Eq.
(10) in Bef. 7. The tilde denotes the Fourier transform
with respect to q as defined in Bef. 6.
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New methods are introduced for a quantitative evaluation of the dielectric constant de-
scribing the interaction of a long-wavelength test wave with electrons in the presence of
electron-ion collisions or small-scale turbulence. It is shown that the usual resonance-
broadenimg arguments of strong-turbulence theory do not apply.

Collisional effects on wave propagation have
been investigated by many authors. In the strong-
ly collisional regime, &u/v «1, AX «1, the dis-
persion relation may be obtained from the two-
fluid transport equations. ' In the weakly colli-
sional regime corrections to Landau damping
have been found either from the Landau collision
term by iteration or by use of model collision
terms such as the Bernstein-Greene-Kruskal or
Fokker-Planck term with constant diffusion and
friction coefficients. In the case of ion-sound
and related modes where electrons of all speeds
v )vph ((v, can res onate with the wave, such pro
cedures become dubious on two grounds. ' The
collision frequency for the dominant process,
pitch-angle scattering by electron-ion collisions,
is strongly velocity dependent, v(v) =

v, (v, /v)',
and iterative procedures cannot be applied to
resonant particles.

The breakdown of iterative procedures for res-

onant particles is the starting point of Dupree's
perturbation theory for strong turbulence' and
related theories. A principal result of Dupree's
theory is the broademng of wave-particle reso-
nances u —lt ~ v = 0. The broadening is estimated
as A~= (-, O'D)'~', where D(v) is the velocity diffu-
sion coefficient. Not even the solution of a sim-
plified diffusion equation for the ensemble-aver-
aged orbits has been obtained however. By vari-
ous methods or simply by ignoring the velocity
dependence of D (v) one arrives at

exp[ik x(-t)]
= exp [tk (x v t) —-',k D ~ kt]—

replacing the usual unpertubed orbits. Accord-
ingly, the usual resonant denominators are re-
placed by the Laplace transform of (1). Custom-
arily even further approximations are made to
replace 6(~: -k ~ v) by a, Lorentzian or square
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function of width Ace. While such considerations
are perhaps sufficient to illustrate the origin of
resonance broadening' they have recently been
reiterated so many times that it becomes increas-
ingly difficult to question their practical use.
The principal aim of this paper is not only to do
just that but to introduce new methods for obtain-
ing quantitative results. Rather than trying to
reduce the results of formal perturbation theory
to a tractable problem we start from simple
physical concepts, making use of the analogy be-
tween collisional and turbulent scattering of par-
ticles. That this is of more than heuristic value
has been demonstrated in two earlier papers. It
is frequently necessary to consider at the same
time both collisions and turbulence effects and
it has been shown that the modified turbulence
theory, mode coupling included, may be derived

in exactly the same way as collisional modifica-
tions. ' One perturbs the equation for the average
distribution function, linearizing in the test-wave
amplitude but not with respect to the background
fluctuation spectrum. The test-particle propaga-
tor (conditional probability density) P(x, v, t~x', v',
t'), f' & t, is the Green's function for the solution
.of the resulting equations. The modified quasi-
linear dielectric constant, e.g. , takes the form

6 (k, (d)

(2)

where N(v~k, cu) is the Fourier-Laplace transform
of the conditional probability density for the test-
particle position x'(i'),

N(v~k, ~) = J,"d~ fa'xfd'v'P(x, v, f~x+r, t+7, v') exp[i((dT —k' I')].

Note that we do not make the conventional approx-
imation which neglects the action of the propaga-
tor on hf/5v. This has been accomplished by the
use of the adjoint propagator4 which in the pres-
ent case (homogenous plasma) amounts simply
to an interchange of the vand v' integrations.
Use of the adjoint propagator becomes even more
important in the electromagnetic conductivity
tensor where k ~ (5f/5v) is replaced by a much
more complicated expression. In this case one
computes V(v~k, (u) = fd'v'v' P(v ~k, ~, v'). Gen-
erally, the method applies if one does not need
to compute f, (k, m, v) itself but only certain mo-
ments.

N(v~k, &u) has to be found from the kinetic equa-
tion with the appropriate turbulent and particl, e-
particle collision terms. The procedure (approx-
imation) depends on the specific problem to be
considered. There seem to be no short cuts,
such as suggested by (1). Generally, it is not
useful to attempt an approximate solution for the
complete test-particle propagator P but as much
as possible one should apply approximation meth-
ods to the required moments of P. This will be
illustrated by the specific case to be considered
now, which I think is one of the simplest physi-
cally interesting and consistent problems. We
study the interaction of electrons with a test
wave in the presence of an isotropic low-phase-
velocity, vs ((v, turbulent spectrum, for defi-
niteness, e.g. , both ion-sound test wave and spec-
trum. ' The dominant effect of such fluctuations

~ ~is pitch-angle scattering just as that of electron-
ion collisions [v, = w~, (8'/nT, )(&u, /kv, )]. The
equation for N takes then the form

v(v) 5 I —vv 6A'

2 5v v hv
(4)

which is obtained by v integration and Fourier-
Laplace transform of the backward Kolmogorov
equation for P describing the pitch-angle diffu-
sion process. The test wave is restricted to low
frequency and long wavelength for two reasons.
Firstly, collisional effects are strongest in this
case as may be seen by writing (4) in dimension-
less form, N=N(v, &u, p)/kv, v = v/kv, &u= &u/kv,

and p, =k v/kv. Secondly, in general, the colli-
sion term would depend on frequency + and wave
number k of the test wave. Equation (4) is valid
for k«k' and ~-k ~ v «k'v, where &' and k'
are typical frequency and wave number of the
background spectrum. The inelastic scattering
processes lead to the establishment of a Maxwell
distribution in the classical case to a self sinzilar-
dis tribution' .

f(v) = c, expl. —(&/&,)')

in the turbulent case, The effect of inelastic col-
lisions on N may be neglected (take Z- ~in the
classical case).

Equations (2) and (4) are written in terms of
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spherical coordinates e, 8, and cp, cos8=p. , with k as polar axis. N(v, ur, p) is expanded in Legendre
polynomials P, (p), since they are eigenfunctions of the collision operator:

OO 1 1

N(v, |d, p) = Q (- i)'(2l + 1) ',
I

't
'

—,'!N, (v", &u)P, (p).
1=0

From (4) it follows that f, =N, +,/N, satisfies

f, —(1/f, ,)+g, =0, /=1, 2. . . ,

whereg, =[ iv-+ —2vl(I+1)]—,'(2l+1)[(—,'I —2)!/(2l)!]', I=0, 1,2. . . . For an isotropic distribution (2) be-
comes

e, (k, ar) = —(ur, /k)'f dv 4@v(bf/5v)[1+i~N(v, v)],

where N(v, c3) = ,J', d—pN(v, v, p) = ,nN, (v—,v). N, can be written as a continued fraction, N, = (1/g, +. . . )
x (1/g, +. . .)~ ~ ~, which was evaluated numerically by a simple algorithm. The first two iterations yield
in the strongly collisional regime v» l, co

2 (-', v)+is)
w (o'+(-', v)''

In the collisionless limit v- 0+

Noo
I

dp' " ' +=H(ur)+ —ln
2 ~ g 1++

. (d —p, +$0 7T
(10)

where H(w) = 1 for P &1, and 0 for Fu & 1.
& = 1 is the boundary between resonating and nonresonating particles. In the weakly collisional re-

gime v«1 the differential equation (4) may be solved by the methods of singnlar perturbation theory.
For resonating particles &u &1 we introduce the stretched variable q = (m -p)/e, e = v' ', and find

N(v, u), g) = (1/e) f dv exp[i'~ —(1 —(3')r' /3][1 +ex,(g, 7)~ ~ ~ ], (11)
where E,(v, v) are polynomials of degree 5l in r Equati. on (11) should be compared to (1). The reso-
nance function (3) can be expressed in terms of Airy-Hardy integrals Ei, or Lommel functions. All we
require however is the angle-averaged resonance function N(v, ~) which can be obtained much more di-
rectly It can. be shown that sf „dgN=n; thus N(v, w) =m/2 —(e/2)(f'„"~'+@+»«dye), where outside
the resonance region q =O(1), (4) may be solved by straightforward iteration. The result is

N, (v, (o) = N, '+ 2v/3m(1 —~')' —[2 i v'/m(1 —u)')'] G, (+) +. . . , (12)

where G, is a polynomial of degree six in +.
For the boundary layer !Cu —1!= 0(v'") between

resonating and nonresonating particles the ex-
pansion parameter is v' '. The decay of the cor-
relation between wave and particle is no longer
exponential as in (11)but algebraic, since for p

1, i.e., k ili, a small deflection in angle does
not move the particle out of resonance.

From (11)and (12) we can draw the very im-
portant conclusion that the modification of the di-
electric constant does not arise from resonance
broadening. Replacing, as is frequently done,
the real part of N by a Lorentzian, i.e. , Co -~
+ is&, in (10) does not, reproduce (12) to any or-
der. [The second term in (12) would require a&a

&0]. The important modification of N("v, Cv) comes
from the q»1 region where HeN(v, Cr. , q) goes
negative.

The present analysis also does not support
earlier contentions"' based on estimates of the
resonance function from (1), D = v(v)v'/2, that
the effect of pitch-angle scattering is a cutoff of
the linear resonance for v(e) z 1 and thus a reduc-
tion in damping. On the contrary, I find that the
weakly collisional, v & 1, and the collision-domi-
nated, v&1, regions of velocity space can make
contributions of the same order to Ime, c.f. Fig. .
1. The strong velocity dependence of the colli-
sional effects requires in general numerical inte-
gration of the dielectric constant (8). A Simpson
scheme with adaptive step size was used. One
has a continuous transition from Landau damping
to collisional damping (or growth in case of a
drift u &u/k) as 1/kA. = v, /kv, increases, as shown
in Fig. 2. The present problem has a close ana-
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FIG. 1. Resonance function No(~, v) versus v2/2v, 2;
v=(1/kA}(v~/v)4, a =a/kv, w/kv~=0. 03, ]/k)I. =0.02.
Collisionless-theory%0 and its cutoff in earlier the-
ories.
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FIG. 2. Collisional modification of dielectric con-
stant. Imee = (1+DE~) Imee, cu/kve =0.03. Reee = (1
-DRe) B ~e (not shown), where DRe 0.06Dym f
A, and DR~=0.009D~ for curve h, with the same pa-
rameter range.

log in neoclassical theory of transport where it
also has been shown that a plateau does not exist
as the collision frequency decreases. '

From Fig. 1 and (8) it follows that collisional
effects become much weaker for a distribution
which is flat in the low-velocity region. In the
turbulent case where guasilinear "flattening"
leads to (5), corrections to the quasilinear di-
electric constant e' are indeed very small. Com-
puter simulation of ion-sound turbulence verifies
the validity of quasilinear theory for the wave-
electron interaction. ' To complete the theory
for this case I have shown that modified mode-
coupling terms (perturbation of collision operator
by test wave) are also small, using the methods
developed here and in an earlier paper. '
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