
VOLUME 35, NUMBER 14 PHYSICAL REVIEW LETTERS 6 OcTQBER 1975

Self-Focusing Relativistic Electron Streams in Plasmas

J. L. Cox, Jr.
Department of Physics and Geophysical Sciences, Old Dominion University, Norfolk, Virginia 2M08

(Received 23 January 1975)

A relativistic electron stream propagating through a dense plasma induces current and

charge densities which determine how the stream can self-focus. Magnetic self-focusing
is possible because stream-current neutralization, although extensive, is not complete.
Electric self-focusing can occur because the stream charge becomes overneutralized
when the net current is smaller than a critical value. Under some circumstances, the
latter process can cause the stream to focus into a series of electron bunches.

An electron stream propagating through a plas-
ma can self-focus either magnetically or electri-
cally depending on the magnitude of the net stream
current and on the extent to which the stream
space charge is compensated by positive plasma
ions. If its space charge is partially neutralized
and if its net current is large enough, the stream
will self-focus magnetically. ' On the other hand,
an electron stream with net current too low to ex-
perience magnetic self-focusing will self-focus
electrically if the net charge density in the stream
is positive and sufficiently large. " The former
focusing process is typically manifest in high-
current streams, while the latter has been stud-
ied primarily in relation to low-current streams
propagating through tenuous plasmas generated
by collisions between the stream electrons and
background neutral atoms. A recent paper by
McCorkle, however, shows that the electric self-
focusing process can also be important in high-
current, relativistic electron streams propagat-
ing through neutral gases.

The net current, net charge density, and, con-
sequently, the self-focusing properties of a rela-
tivistic electron stream propagating through a
dense plasma depend on the current and charge
density induced in the plasma by the stream.
Previously published work by the author and co-
workers' and by others indicates that such
a stream is nearly current neutralized by an in-
duced reverse current which counterstreams
along the direction of the stream axis and is near-
ly space-charge neutralized by the induced plas-
ma charge density if the frequency of momentum-
transfer collisions between plasma electrons and
ions is not too great and if the dimensions of the
stream are large compared to c/~~. (su~ is the
plasma frequency of the plasma electrons and c
is the speed of light. ) The role of the induced re-
verse current along the axial direction in limit-
ing the extent to which the injected stream can

magnetically self-focus, thereby allowing the
propagation of streams with currents in excess
of the Alfvln limit, has been recognized previous-
ly. However, the relationship between the in-
duced axial current, the induced current in the
radial direction, and the induced charge density
has not been explored adequately. It is shown be-
low that this relationship prohibits total current
neutralization but allows charge neutralization
and even charge overneutralization for the gener-
al conditions cited above. Thus, these streams
can experience electric self-focusing and also,
for large enough injected currents, magnetic
self-focusing.

The stream considered in the present discus-
sion is an axially symmetric pulse of relativistic
electrons which has finite length and finite radius.
Its current density can have arbitrary dependence
on the axial coordinate, z, but is assumed to be
uniform in the radial coordinate, r, for 0 ~ r ~a
and to be zero for r &a, where a is the stream
radius. The pulse is assumed to travel at a con-
stant velocity V in the positive z direction through
a dense uniform plasma of infinite spatial extent.

The behavior of this system can be described
by Maxwell's equations and the generalized Ohm's
law:

v ~ E = '
— '; v && 8 = p,,(j,+ j~)

~o

p x E = 86/st;

+—j XB.
m ~

Rationalized mks units have been used. The cur-
rent density of the injected stream is j~, the cur-
rent density induced in the plasma is j~, and p,
and p~ are the corresponding charge densities.
The electronic mass is m, and the electronic
charge is —e. Since the electron density, n, of
plasma electrons is assumed to be much greater
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I(q) = Vq(rt) +I,„(q), (4)

where I(q) =I~(g) +I~,(q) is the net current within
the stream channel and q(q) = q,(q) +q~(q) is the
net charge per unit length within the stream chan-

The Bennett critical-. current condition' and Eq.

than the density of the injected electron stream,
n and the frequency, v, of momentum-transfer
collisions between plasma electrons and ions are
treated as constants.

Equations (1) imply total charge conservation;
i.e. , that 8(p, + p~) /St + V ~ (j ~+ j~) = 0. If it is as-
sumed that the stream charge is conserved as it
propagates through the plasma, it then follows
that spget+ V ~ j,=0. These two equations then
imply that Bp~/St+ V ~ j~ = 0; i.e., that the plasma
charge is conserved.

Consider the cylindrical volume illustrated in
Fig. 1 which is coaxial with the injected stream
pulse and has a radius equal to the stream radius,
a. Let it extend to infinity in the positive z direc-
tion, and let it be bounded on the left by a plane
which is normal to the z axis and is located at
arbitrary axial position z. As the stream pulse
enters this volume from the left, currents in-
duced in the plasma flow across the bounding sur-
face causing the removal of plasma electrons
from the volume. If the continuity equation for
the plasma charge is integrated over this cylin-
drical volume, it is found that I~,(q) = Vq~(7l)

+I~„(q), where 7)= Vt-z; I~,(q) = f;j~,(r, q)2&rdr
is the induced plasma current flowing across the
plane located at z, I&„(q) = 2ma f "„j~(a, q') dq' is
the induced plasma current flowing across the
cylindrical surface, and q&(q) = f'p~(r, q)2&r dr is
the charge per unit length induced in the plasma
within the stream channel. This result can be
added to I,(q) = Vq,(q), where I,(q) is the injected
stream current and q„(q) is the injected stream
charge per unit length. One thus obtains

I

I

I

I

I

I

FIG. 1. Dashed lines denote the volume of integra-
tion; solid lines denote the stream pulse.

I&„2+2VqI~&87rcoc2N(+c y 2q2, (5)

where y '= 1 - V'/c'. Thus, it is clear that the
net stream current is large enough to produce
magnetic self-focusing only if the induced plasma
current in the radial direction is sufficiently
large to satisfy Eq. (5). The physical reason for
this is that the divergence of plasma electrons in
the radial direction provides the charge which
partially neutralizes the space charge of the net
current I, thereby making magnetic self-focusing
possible. If I~„were zero, then I would equal
Vq; i.e., the net current and net charge per unit
length would be related as are the current and
charge per unit length in a stream which has no
charge neutralization.

By the use of previously published results, "it
can be shown2' that for a» V/ru&, v «&u&, and P2

&0,

(4) can be used to determine whether or not the
injected stream can self-focus magnetically. Ac-
cording to the Bennett condition, magnetic self-
focusing is possible if the net current within the
stream I is greater than c(8we jVg+q')'~', where
N is the total number of particles (including plas-
ma particles) per unit length of stream, g is the
mean kinetic energy per particle due to motion
transverse to the stream axis, and q is the net
charge per unit length of stream. If the net cur-
rent given by Eq. (4) is substituted into the Ben-
nett condition, one finds that magnetic self-focus-
ing can occur if

j~„(a, q) =(V/2) f exp[ —o.(q —g)/2] sin[P(q —$)][ep,($)/S)] d$ (6)

and

p, (n) = (~,'/&V-') f „em[ (n 8-/2] s -[&(n 8]p&(0 «, - (7)

where j „is the radial component of j~, p'=u&~'/V' —v '/4V', and n=v /V. Equations (6) and (7) can be
used to estimate the magnitudes of I~„and q once the functional form of p,(q) has been specified. » a
particular example, let p~(q) be chosen as follows: p~(q) = (p~/2w)[2vq/l —sin(2m'/l)] for 0 q - l; P~(R)
=p for l &q &L —l; p,(q) =(p /2w)(-2m(q —L)/i+sin[2m(q-L)/l]] for L —l q-L«, where p~, the length
of the stream head l, and the total stream length L are constants. This stream pulse is illustrated in
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Fig. 2. If it is also assumed that f » V/~~, it can be shown that for 0 ~
q « f, I~„=VI~@/al~~ and

q(q) = (nI~ V/l(u~') [1—cos(2m'/f) ] + (2& VI~/f2&v~') sin(2m@/f);

for l - q L —l, I~„=VI~/as~ and

q(q) = (4v'V'I~/Pa~')(exp[- (u/2) (g- l) ] sin[p(q —l) ] —exp[- (o'/2) q] sin(pq) ),

I I~„I —)II ~ (ma'e, v~~'/ec')g. (8)

&&I'b
I

I'bol

FIG. 2. The stream pulse.

where I~ = p~Vva'. Since I~„ is always greater
than Vq for the conditions cited, Eq. (4) shows
that I(q) g0; i.e., that current neutralization can-
not be complete although it may be nearly so.

By substituting these results into Eq. (5), one
can show that for either 0 «g l or l q I.—l,
magnetic self-focusing is possible if I~ &(2e+g/
w)'~'a~~. This result indicates that magnetic self-
focusing is enhanced by injecting the relativistic
electron stream so that its energy associated with
transverse motion hand its radius are as small as
possible.

That this condition for magnetic self-focusing
is not easily satisfied can be illustrated by refer-
ence to the experiments performed by Roberts
and Bennett. ' According to the criterion present-
ed above, their injected current would have had
to be approximately 10 times larger than it was
in order for magnetic self-focusing to have oc-
curred. Thus it does not appear that their streams
were focused by this mechanism after they passed
through the anode of the stream-forming diode.

The possibility of electric focusing can be as-
sessed by examination of the radial potential vari-
ation within the stream. Previously published
work' can be used to show that for a&a~/V»1 the
magnitude of the electric scalar potential is near-
ly constant along the radial direction except with-
in a thin shell at the stream radius where it de-
creases rapidly. It can be shown" that &y =(c'/
2wc, &u~'a')q, where b,y = y(0, q) —y(a, q). Electric
self-focusing results if eely ~ g. Substitution of
these expressions into Eq. (4) yields I-I~„~(ma'

xeo~&'V/ec')P as the condition for electric self-
focusing. Since I= —II) and I~„=—II~„I, this con-
dition can be written as follows:

This condition is similar to the one derived by
Mccorkle4 in that electric self-focusing occurs
when ~I ~ is sufficiently small.

An important characteristic of the electric self-
focusing experienced by the streams considered
here is that the amount of focusing is not uniform
along the stream axis. The special example con-
sidered above shows that q(q) varies sinusoidally
along the flat portion of the stream pulse (I ~ q
~L —f), a result which does not depend on the
shape of the rising portion of the pulse. More-
over, the distribution of net charge travels with
the same speed as the stream. Thus, the net
charge in a given segment of the stream is sta-
tionary, a circumstance which can cause the
stream to focus into a series of coherent electron
bunches separated successively by a distance- w V/+&.

The author wishes to express his appreciation
to Dr. R. A. McCorkle for stimulating and helpful
discussions during the course of this work.
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~The result presented in Eq. (4) is valid for a stream
pulse that travels with uniform velocity through a uni-
form plasma; i.e. , a pulse which is a function of z and

t only in the combination Vt -z. It does not depend on
the assumption of an infinite plasma, although the de-
tailed forms of the various terms are inQuenced by the
presence or absence of boundaries.

These expressions were derived by neglecting the
j& x B term in Eq. (3). This is consistent with the re-
sults obtained: The stream is quickly current-neutral-
ized except within a thin shelI at its radius. When the
injected current is large enough to make the net cur-
rent in this shell significant, as is now being consid-
ered, the magnetic force causes the plasma electrons
in this shell to antipinch. Consequently, I&„ increases
and the critical current for magnetic self-focusing is
lowered below the value given here, IIowever, the con-
comitant increase in positive space charge in the shell
limits this process and keeps the critical current from
being lowered greatly.

23This result was derived, under the assumption that
a~p» 1, by comparing the expression for y found in
Ref. 6 with the expression for p obtained by use of Eq.
(10) in Bef. 7. The tilde denotes the Fourier transform
with respect to q as defined in Bef. 6.
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New methods are introduced for a quantitative evaluation of the dielectric constant de-
scribing the interaction of a long-wavelength test wave with electrons in the presence of
electron-ion collisions or small-scale turbulence. It is shown that the usual resonance-
broadenimg arguments of strong-turbulence theory do not apply.

Collisional effects on wave propagation have
been investigated by many authors. In the strong-
ly collisional regime, &u/v «1, AX «1, the dis-
persion relation may be obtained from the two-
fluid transport equations. ' In the weakly colli-
sional regime corrections to Landau damping
have been found either from the Landau collision
term by iteration or by use of model collision
terms such as the Bernstein-Greene-Kruskal or
Fokker-Planck term with constant diffusion and
friction coefficients. In the case of ion-sound
and related modes where electrons of all speeds
v )vph ((v, can res onate with the wave, such pro
cedures become dubious on two grounds. ' The
collision frequency for the dominant process,
pitch-angle scattering by electron-ion collisions,
is strongly velocity dependent, v(v) =

v, (v, /v)',
and iterative procedures cannot be applied to
resonant particles.

The breakdown of iterative procedures for res-

onant particles is the starting point of Dupree's
perturbation theory for strong turbulence' and
related theories. A principal result of Dupree's
theory is the broademng of wave-particle reso-
nances u —lt ~ v = 0. The broadening is estimated
as A~= (-, O'D)'~', where D(v) is the velocity diffu-
sion coefficient. Not even the solution of a sim-
plified diffusion equation for the ensemble-aver-
aged orbits has been obtained however. By vari-
ous methods or simply by ignoring the velocity
dependence of D (v) one arrives at

exp[ik x(-t)]
= exp [tk (x v t) —-',k D ~ kt]—

replacing the usual unpertubed orbits. Accord-
ingly, the usual resonant denominators are re-
placed by the Laplace transform of (1). Custom-
arily even further approximations are made to
replace 6(~: -k ~ v) by a, Lorentzian or square


