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parable to what is observed experimentally. "
With a decrease in temperature (b, ,&') will tend
to decrease; if, applying Mott's variable-range
hopping argument, ' one takes (l), &&') proportional

then $' will tend to zero as T~ . 'thus the
occurrence of a nonzero thermoelectric power
does not necessarily imply an asymmetric distri-
bution of hopping states about the Fermi level.
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X-ray photoemission line shapes of 2s and 2P electrons from Al, Mg, and Na have been
analyzed in terms of the theory of Mahan and of Nozieres and De Dominicis. The resul-
tant singularity indices, 0.115, 0.13, and 0.19, respectively, require that all x-ray
threshold exponents, save that for the Na K edge, be positive.

The line shapes in x-ray absorption and emis-
sion spectra of simple metals have historically
been the testing ground for the many-electron
theory of Mahan and Nozieres and De Dominicis
(MND). " Its prediction of peaked l... and round-
ed K edges in these metals'4 has been the subject
of debate" that has yet to reach a clear-cut
resolution. Doniach and Sunjic (DS}' have applied
the MND theory to x-ray photoemission spec-
troscopy (XPS) of core electrons, deriving a line
shape with a tail on the low-kinetic-energy side
that is independent of core-hole symmetry. Such
line shapes were observed in XPS of Na metal'
and identified as manifestations of the MND

theory. Subsequent measurements in noble,
transition, ' and other simple metals" have quan-
tified the phenomenon. It remains to be shown,
however, whether the MND theory is quantitative-
ly or, some argue, "even qualitatively predic-
tive in electron and x-ray spectroscopies. In
this Letter we present data which demonstrate
for the first time that the MND theory accurately
and unambiguously predicts both XPS core and
x ray Lt s -line shapes in Na, Mg, and Al How-.
ever, we also show that unless physically un
realistic d phase shifts are invoked, the many
electron phenomenon is not responsible for the
rounded K x ray edges obser-ved in Al and Mg.
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at -10 "Torr. In the HP spectrometer, sam-
ples were transferred in vacuo to the measure-
ment region. The base pressures were -10 '
and -10 "Torr, respectively. Monochromatized
Al Kn radiation was used. Analysis of core-
level and Fermi-edge shapes in a variety of met-
als showed the instrumental resolution functions
to be a slightly skewed Gaussian, full width at
half-maximum (FWHM) equal to 0.63+0.03 eV,
in the HP spectrometer" and an approximately
symmetric Gaussian, FWHM=0. 25+ 0.02 eV, in
the modified instrument. '4

A spectrum of Al 2s electrons taken with the
lower-resolution spectrometer is shown in Fig.
1. Curve a is a. symmetric (n =0) Lorentzian of
FWHM=0. 78 eV. This lifetime width was deter-
mined to +0.04 eV by successive comparisons of
the data on the luau-binding-energy side with a
DS peak convoluted with the resolution function.
The result of similarly broadening curve a is
shown as curve b. The best value for o. was
determined through detailed comparison of the
data on the high-binding-energy side of the peak
with curves like b, but containing varying de-
grees of asymmetry (varying n's); such a curve
for n =0.12 is shown and labeled c. Comparison
of the data with curve c gives a clear indication
of a small amount (&0.3 monolayers) of surface
impurity, in this ca.se A1,0„occurring at -2.7
eV higher binding energy than Al. This is clearly
the limiting factor in the determination of a from
such a spectrum.

To illustrate the experimental uncertainty in de-
termining e for an atomically clean surface, we
consider the high-resolution Al 2p data, shown in
Fig. 2. The expanded scale shows that, after
constraining the 2P», /2P», intensity ratio to the
theoretical value of 2 and letting the splitting be
0.40 eV, an n of 0.115 gives an excellent fit to
the data, and that its uncertainty (determined by
statistics) is clearly + &0.02. A similar limit ap-
plies to the lower-resolution data as well. As a
further consistency check we have analyzed the
lower-resolution Al 2p data, shown in Fig. 1, us-
ing the same spin-orbit splitting. The value of
a =0.12 provides a good fit, comparable to that
of the 2s data. A value as high as 0.161+0.008
reported in Ref. 10 is not compatible with our ex-
perimental results.

The low-resolution magnesium data shown in
Fig. 1 are well fitted for n =0.13, in agreement
with Ley et a/. " The different shapes of the life-
time-limited 2s and resolution-limited 2P levels
serve to constrain n and establish its assignment
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FIG. 2. Al 2P data compared with fits for three dif-
ferent values of n. Statistical error bar and instru-
mental resolution are indicated.

with limits of +0.015. (The free-ion spin-orbit
splitting of 0.28 eV was used for Mg 2p. ) Note
that the presence of the 7.3-eV surface plasmon
(denoted by Re,) in Mg and possible contributions
of (extrinsic) inelastic energy losses in these
metals do not significantly influence the shape of
the tail of the DS function. This tail may be mis-
taken for "background. " Subtraction of this back-
ground and subsequent determination of an asym-
metry parameter based on half width at half-
maximum values should yield erroneously small
values. Surface contamination will tend to yield
erroneously high values.

The high-resolution sodium data shown in Fig.
1 were each accumulated over a 20-h period. In
spite of the ultrahigh-vacuum conditions, a very
small (&0.2 monolayer) surface impurity is ob-
servable. Here, as in the case of Mg, the sur-
face plasmon at 4. 1 eV does not significantly af-
fect the determination of a. We have illustrated
this by adding a Lorentzian plasmon component
to the tail. The small spin-orbit splitting in Na
(using the free-ion value of 0.17 eV) is unresolved
but the consistency with e =0.19 determined from
the 2s data is apparent. The detailed agreement
in the peak itself between the 2s data and our
simulated curves is demonstrated in the inset
(the arrows denote the expanded energy region).

The monotonically increasing values of n from
Al to Mg to Na and the large rise between Mg
and Na strongly suggest Ne influence of increas
ing s-zouave scattering by the core hole. If we as-
sume for the moment that d and higher phase
shifts can be neglected in these simple metals,
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FIG. 3. Threshold exponents o.'0 (solid curve) and +,
(dot™dashed curve) versus singularity index e assum-
ing only s and p phase shifts. Error bars for our meas-
ured n determine uncertainties in n 0 and e &.

&„&,) f» Na to be (0.398, —0.085 —0. 173.
0.921, 0.163, 0.0244), yielding a =0.188, in ex-
cellent agreement with the present measurement.
The same agreement applies to the calculations
of Longe. " Very recent calculations by Mahan"
for Na give (0.34, —0.02, —0.12; 0.76, 0.20,
0.042), yielding o =0.14. His phase shifts for Mg
and Al yield o. ' s of 0.10 and 0.09. All three of
his e values, being somewhat lower than our
measurement, indicate an underestimate of the
s phase shift. However, even with these values,
a, remains positive for Al and Mg. The rounded
K edges in these metals, therefore, arise sim
ply from lifetime broadening. Interestingly, our
measurements and all three calculations'"'" in-
dicate a negative n, for Na, putting into question
the claims that the signs of n, in simple metals
are either all negative" or all positive. "

then Eq. (2) and a measurement of n uniquely de-
termine the I, ,- and K-absorption-edge expo-
nents a, and ~,. In Fig. 3 we have plotted n,
(solid curve) and n, (dot-dashed curve) versus o.

for this condition. The measured n's and their
error bars define the corresponding ranges of
the threshold exponents. Precise assignment of

n, 's for Mg and Al is difficult since a small un-
certainty in a corresponds to sizable uncertain-
ties in n, and n, . Furthermore, the shortcom. -
ing of the two-phase-shift analysis becomes ap-
parent for Al since it sets a lower limit of e
= 0.125. Nevertheless, the various e, and e,
literature values ' of Al and Mg all fall within
our limits of uncertainty. For Na, however, our
value for e, of 0.37+0.02 is well outside that of
0.26 +0.04 quoted by Dow and Sonntag. ' While the
trend of o., with r, is, as those authors point
out, ' monotonic for Al, Mg, and Na (2.07, 2.65,
and 3.99, respectively), the relationship is not
linear because it is only an indirect manifesta-
tion of the real parameter of importance —the s-
scattering phase shift 6,.

While the magnitudes of the threshold exponents
are not well determined for Al and Mg, it re
mains clear that their a& exponents are positive
and therefore are not responsible for the rounded
K edges observedin the x ray data. This st-ate-
ment remains valid even with inclusion of modest
amounts of d phase shifts, comparable to those
in theoretical calculations. '"'" For example,
Ausman and Glick' have calculated (n„n„„o
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