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We have obtained symmetric envelope solitons in two and three dimensions in a medium
with a saturated nonlinear susceptibility given by yyi~exp(- |¢1)—1, where ¢ is an ap-
propriately normalized field amplitude. Examples for an electromagnetic wave and an

electrostatic wave trapped in a plasma are presented,

Extensive investigations have recently been
carried out for one-dimensional propagation of
envelope solitons.! They are obtained as station-
ary localized solutions of the nonlinear Schréd-
inger equation by balancing the effect of group
dispersion, d?w/dk?, and that of quadratic non-
linearity in the susceptibility, xxi ~|®|2, where
¢ is an appropriately normalized field amplitude.
However, when the equation is generalized to two
and three dimensions with the same quadratic
nonlinearity, localized solutions are found to be
nonstationary except for a very special case of
measure zero; they tend to either collapse or
expand indefinitely depending on the initial con-
dition.? The question then arises as to whether
higher-order nonlinearity can stop the collapse
or expansion and admit localized stationary solu-
tions. In this paper, we present such solutions
for the case when the nonlinear susceptibility has
the form xy;, ~exp(~ |¢|?) = 1. This form of non-
linear susceptibility arises in the problem of
steady propagation of large-amplitude high-fre-
quency waves in a plasma. Physically, the non-
linearity arises in this case through a local den-
sity depression created by the ponderomotive
force of the wave.® The nonlinearity saturates
when most of the plasma particles are expelled
from regions of high field intensity. In this Let-
ter, we present examples for both electromag-
netic and electrostatic waves confined in a sta-
tionary plasma cavity. Although we specifically
discuss only the problem of waves in a plasma,
the results obtained are quite general and may
be regarded as general soliton-like solutions for
a certain class of nonlinear wave equations.

We first consider steady propagation (in the z
direction) of an azimuthally polarized electro-
magnetic wave which is localized in the radial
direction. Let ¢ be the modulus of the azimuthal
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electric field normalized as ¢ = e|Eq|/w[m (T,
+T;)]'/?, where the notation used is standard. If
we normalize the radial distance by the collision-
less skin depth, c¢/w,, where w, is the plasma
frequency in the absence of the wave, the sta-
tionary wave equation takes the following form:

1
% > a—a; rop +[1 -0 —exp(- ¢2)}¢=0, 1)

where 0 is the normalized frequency mismatch
from the plane-wave dispersion relation, o = (w,?
+Cc%k% = w?)/w,?, and k is the wave number in the
z direction. We have solved this equation as an
eigenvalue problem (for eigenvalue o) for the
case of the lowest eigenvalue (ground-state solu-
tion). From the structure of the equation, we
can infer the solution to be of the form I,(c'/27)
near the origin and K,(0'/27) at large distances,
these being smoothly connected near the maxi-
mum with the form J,([1 =0 — exp(— ¢2)]*"?7),
where ¢, is the maximum value of ¢. There also
exist oscillatory solutions corresponding to high-
er eigenvalues, but we shall not consider them
here, because they have a greater extent in the
radial direction and hence are quite likely to be
unstable against smaller-size perturbations.*
Numerical results for the solutions are shown in
Fig. 1. We see from this figure that for o ex-
ceeding 0.1, ¢, becomes of order or greater than
unity, so that the approximation of quadratic non-
linearity breaks down.

Two features are to be observed in the results.
First, ¢, increases monotonically with o, and
secondly, the position of the maximum amplitude,
7 =%y, as well as the width of the radial profile
decrease as 0 increases up to about 0.3 and then
starts increasing indefinitely as ¢ approaches
unity, with a broad minimum which extends from
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FIG. 1. Two-dimensional solitons for azimuthally
polarized electromagnetic waves for 0=0.1, 0.3, 0.5,
0.7, and 0.9.

0~ 0.3 too~0.6. The minimum value of 7,, as
well as the minimum width at half-intensity max-
imum (¢ = ¢ ,/V 2) are about three times the col-
lisionless skin depth.

The first feature originates from the fact that
as the amplitude increases, the susceptibility,
and hence the index of refraction, deviate from
the unperturbed value, and so does the frequency
mismatch 0. The second feature may be inter-
preted as follows. For small o, or for small ¢,
the main part of the solution at large 7 is gov-
erned by K,(0c'/27) which shrinks toward the ori-
gin as 0 increases. This simply represents the
tendency of collapse with increasing nonlinearity.
On the other hand, for large 0, ¢ becomes sub-
stantial over a wide range of 7; then neglecting
exp(— $2), one obtains a solution of the form
J,((1 —=0)'"2r) which expands indefinitely as o ap-
proaches unity. Physically, this represents the
fact that as ¢ increases, the index of refraction
approaches unity (because the plasma is ex-
pelled), and hence the solution becomes close
to a free-space plane wave which has an infinite
width. The solution with the minimum width rep-
resents the situation where the collapsing ten-
dency balances the tendency to expand because
of expulsion of plasma particles.

So far we have considered only a radial locali-
zation of the wave. Such a solution is, however,
likely to be unstable against self-modulation of
the amplitude along the z direction.® Several
mechanisms®” have been proposed which may
cause such an instability in a plasma. However,
as long as w »w, and the light wave is untrapped
in the z direction, the modulation propagates
with a very high speed, so that even a slight in-
homogeneity of plasma parameters along the z

direction can lead to a low-level saturation of the
instability because of convective effects.” A del-
eterious situation may occur only when w is close
to w, and the light wave is trapped in a locally un-
derdense region. The electromagnetic filament
will then be split into small pieces in the z direc-
tion and the final stationary state will become a
three-dimensional soliton localized in all direc-
tions. Restricting ourselves to azimuthally po-
larized electromagnetic waves, we can obtain
such a solution by replacing #%c%/w,? in o of Eq.
(1) by —82/0z2, where z is normalized by the
skin depth. The equation then becomes

Lty
922 "oy 7 o7 ¢

o Hi-o-exp(-9*}e=0, (2)

where 0 now stands for (w,? - w?)/w,?. The forms
of the soliton-like solution of this equation in the
region » 2 7,, for two limiting cases, ¢2>1 and
¢% <1, are

o~ { cosqz J,((1 =0 —g2)"%r) (¢?>1)
exp(-v|z) K (0 =y?)V?r) (9% <1),

where g and y are certain positive parameters
with (y2+¢®)<1 and 0 is assumed to have a value
between 2 and 1 —¢%. The condition that these
two solutions be connected smoothly gives a re-
lation between ¢ and y. One can easily infer that
they are of the same order. However, since we
are now dealing with a partial differential equa-
tion, we have two independent eigenvalues, g and
o. This brings in an arbitrariness in the shape
of the soliton. Now, for a given wave energy, I
=[2.dz ["rdr|¢|?, the amplitude ¢,2 has a max-
imum at a certain value of eccentricity in the 7-
z directions. For instance, if ¢2>1 in the main
region of soliton, ¢2~Ig(1 =0 —¢?) which as-
sumes a maximum value at ¢=[(1 —0)/3]'/2, This
solution may represent the most stable state.
The typical size of this solution is again given
by the collisionless skin depth. If we further
maximize ¢, by varying o, we obtain 0=0. This
corresponds to an electromagnetic soliton in
which the field oscillates at the plasma frequency
and might represent the final saturation state of
the induced Brillouin backscattering at the cutoff
density.

We now consider the electrostatic case. As in
Ref. 2, we treat a spherically symmetric elec-
tron-plasma oscillation confined in a stationary
plasma cavity. We now take ¢ to be the modulus
of the radial derivative of the electrostatic po-

®
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FIG. 2, Soliton profile for spherically symmetric
electrostatic wave for ¢=0.1, 0.3, 0.5, 0.7, and 0.9.

tential ¢(r) normalized as ¢ = e|9¢/97|w,/w[3T,
x (T, +T;)]'2, where the radial distance is now
normalized by 3Y2Ap, Ap being the Debye length

[(T,/mw,)*?]. Our equation then becomes?
9 1 9o
5‘;F5;72¢+[1—0-9Xp(—¢2)]¢=0, (4)

where 0 = (0,? — w?)/w,%. Localized solutions of
this eigenvalue equation have recently been ob-
tained by Wilcox and Wilcox for the case 0=3.2
The “ground-state” solution now takes the form
I ,50"27) /N 7 near the origin and K,,,(0'27)N 7
for large 7, as shown in Fig. 2. Although the
maximum amplitude, ¢, depends on o in a way

similar to the electromagnetic case, there is one .

distinct difference from the latter; namely, the
maximum electric field amplitude, E,=w@,/w,,
now saturates to a finite value as ¢ approaches
unity, since w vanishes for o -1 (Fig. 3). Note
that in the electromagnetic case w—w, for o0 ~1,
so that there is no qualitative difference in the
behaviors of E, and ¢,. The dependence of the
maximum position and the width on ¢ is similar
to the electromagnetic case. The minimum width
in this case becomes of order 5iAp which occurs
ato~ 0.3. The solution corresponding to this
minimum size will most likely be stable against
all perturbations described by the same electro-
static-wave equation.

In order to apply the above results to realistic
plasma situations, one has to take into account
various dissipation mechanisms as well as pos-
sible instabilities due to coupling of electromag-
netic and electrostatic components. For electro-
magnetic solitons, perturbations in the azimuthal
direction produce coupling with electrostatic
waves. Since the minimum size of the electro-
magnetic soliton is much greater than the Debye

90

0 0.5 1
(e

FIG. 3. Relation between o and ¢, or Eg = we(/w, for
spherically symmetric electrostatic solitons.

length, this coupling may cause an efficient con-
version from electromagnetic to electrostatic
waves, and the electromagnetic soliton may even-
tually be split up into many electrostatic solitons
of smaller size. Now, the minimum radius of
the electrostatic soliton is of order 5Ap. Such a
localized oscillation will suffer a strong transit-
time damping due to thermal electrons, as has
been demonstrated by the one-dimensional simu-
lation.® However, for the case of spherical soli-
tons, the transit-time damping will be reduced
as compared with the one-dimensional case, since
most of the particles pass sideways through the
soliton and do not experience the acceleration by
the maximum field, ¢, A preliminary calcula-
tion using the Fokker-Planck—equation model for
the distribution function shows that the damping
rate is reduced by a factor 20-40 in the spheri-
cal case as compared with the one-dimensional
case for the same typical wavelength.'° Even
with this reduction factor one can no longer ne-
glect the transit-time damping if the radius be-
comes as small as 5Ap. In this case, we need to
include the effect of a pump which balances the
dissipation. We, however, believe that there ex-
ist many situations where the inclusion of both
pump and dissipation does not drastically change
the overall structure of our soliton solutions.

There are many other effects which we have
ignored in the above argument. These include
the effect of ions trapped in the cavity, that of
electrons reflected by the ponderomotive force,
long-range interactions among solitons via parti-
cles and untrapped waves, possible rotation of
the soliton, and so on. These problems are now
under investigation and will be discussed else-
where.
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The combination of multiply reflected electrons and positive ion flow in a reflex triode
arrangement is analyzed. Under certain conditions it is possible to generate very intense
beams of positive ions with this device. The analysis demonstrates that the energy loss
and scattering of the electrons as they pass through the anode have a major effect on the
ion and electron currents. Solid fractional-range anodes are shown to produce more in-
tense ion beams than semitransparent mesh anodes.

Both laser and electron beams'? are possible
energy sources for the heating and compression
required to release fusion energy from dense,
inertially contained plasmas. The feasibility of
using intense beams of positive ions for this pur-
pose has also been investigated.?** The main
problem is that the current density of the avail-
able ion beams is far too low. However, there
is no inherent technological limitation on ion-
beam intensity, and we propose here a method
of producing short pulses of MeV ions at current
densities of ~10 kA/em?,

Recently, Humphries, Lee, and Sudan® have
produced intense beams of positive ions with the
“reflex-triode” or “double-diode” configuration
shown in Fig. 1. Multiple transits of electrons
are used to increase the ratio of ion current to
electron current. The principal disadvantage of
the ion beams measured so far is that the cur-
rent densities are low (20-50 A/ecm?). In connec-
tion with experiments®:” employing the double-

diode configuration of Fig. 1, Smith has pointed
out that the use of a foil anode, instead of the
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FIG. 1. Multiple reflection of electrons in a “reflex
triode.” A fractional-range anode is located between
two cathodes so that the electrons make many transits
before stopping. Positive ions flow from the anode
plasma to both cathodes.
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