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urations "Si(g.s.) = "Si(g.s.) + nnn and "B(g.s.)
='B(g.s.)+nnn are unlikely, theoretical results
will be in better agreement with experimental
data once the correct values of S,S, are included.
The present calculation also verifies the state-
ment of the authors of Ref. 7 that the low cross
section for nnn transfer follows the trend of high-
energy heavy-ion reactions of favoring the trans-
fer of bound clusters. It is worth pointing out in
this connection that because of the smaller bind-
ing energy of the assumed nnP cluster (19.7 Me&)
compared to that of the nnn cluster (38.5 MeV) in
the projectile, the ("B,'Be) reaction on the same
target gives a calculated differential cross sec-
tion about 12 times larger (6.35 pb/sr) compared
to that of the ("B,'B) reaction (0.55 p.b/sr). In
planning multinucleon transfer experiments, dy-
namic effects such as this might be of consider-
able value to the experimenter.

In conclusion, we have shown that the expla-
nations for the suppression or enhancement of
heavy-ion-induced multinucleon-transfer reac-
tions in terms of empirical T-selection rules only

may be clouded by dynamic effects such as those
caused by binding energies of the transferred
clusters to the cores.
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Single-Collision Production of Quasimolecular X Rays in Heavy-Ion Encounters
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Remarkably large quasimolecular (molecular orbital) K-shell x-ray yields are found
in 48-MeV S Ne encounters, unequivocally indicating that production of molecular-
orbital x-rays can occur a.. a result of single-collision mechanisms. Gaseous and sol-
id targets are found to give similar spectral shapes of the emitted continuum radiation.

In heavy-ion-atom collisions certain molecular
states can be transiently formed. If there is a
vacancy in the quasimolecular system electronic
transitions between these states may lead to
emission of guasimolecuiar [molecular orbital
(MO)] x-ray continua.

Originally, a double-collision mechanism has
been postulated'. In a first collision an inner-
shell vacancy is somehow produced in the projec-
tile ion and is then carried into a second collision
where its decay may lead to the observed MO x-
ray transition. The exclusiveness of this mech-
anism appeared to be backed up by recent exper-

iments in gas targets; for example, Saris et al. '
concluded that L-shell MO x rays from 300-keV
Ar-Ar collisions are absent when the incident Ar
ions have no initial I. vacancy. Assumption of the
double-collision mechanism implies that the ini-
tially produced vacancy must survive the time
which elapses between the two collisions. How-
ever, since total lifetimes of vacancies and shell
radii decrease strongly with increasing nuclear
charge, Z, of ions, MO x-ray production would
also decrease for heavier collision systems and
would become difficult to observe for the heaviest
projectile ions. Mokler, Stein, and Armbruster'
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FIG. 1. X-ray spectra from collisions of 48-MeV sul-
fur ions of charge 7+ with Ne gas at 0.9 Torr, cor-
rected for absorption effects. Because of the particular
collision conditions (no initial K vacancy production at
small impact parameters) no radiative-electron-cap-
ture peak is visible.

indicated that a single-collision mechanism might
be worth considering, i.e. , production and decay
of a vacancy during a single encounter. Meyer-
hof et al. ' measured MO x rays from bombard-
ment of thick solid targets and estimated contri-
butions due to double and single collisions on the
basis of various assumptions concerning excita-
tion of the 1sv MO. It is the purpose of this I,et-
ter to present experimental MO x-ray spectra for
gas targets which prove the occurrence of single-
collision mechanisms. We discuss some produc-
tion mechanisms and include effects due to dy-
namic collision broadening.

Essentials of the experimental setup for the
measurement of x-ray spectra from bombard-
ment of thin, solid targets have been described
previously. ' In addition, for the present experi-
ment, a windowless, differentially pumped gas
cell with pressures of up to -1 Torr Ne has been
employed. A Si(Li) x-ray detector viewed the
gas-beam interaction region over a length of 2

cm. Figure 1 shows an x-ray spectrum for 48-
MeV sulfur ions with charge state 7+ incident on
a 0.9-Torr-Ne-gas target. For comparison, Fig.
2 presents an x-ray spectrum for 55-MeV sulfur
on 100-pg/cm' solid Al.

In the following, we elucidate the collision pro-
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FEG. 2. X-ray spectrum from collisions of 55-MeV
sulfur ions with 100-pg/cm2 aluminum, corrected for
absorption effects. REC: radiative electron capture;
———Mo x-ray spectrum after subtraction of REC.

cesses by discussing the high-energy MO radia-
tion tails especially for x-ray energies &„~&„,
where E„denotes the transition energy of the
ideally united collision system (united-atom ener-
gy). These tails, clearly visible in Figs. 1 and
2, have been identified in a recent paper' on the
basis of a quantitative theory of dynamic colli-
sion broadening, in which only contributions from
double-collision processes had been taken into ac-
count. Comparison of Figs. 1 and 2 demonstrates
that in the systems studied here experimental
MO tails, measured relative to the characteris-
tic projectile x-ray line, are almost equally in-
tensive in solid, and gaseous targets. It is easily
shown that independent of theoretical models the
appearance of strong MO tails in gas targets can
be explained only by single-collision processes;
note that gas densities used are - 6 orders of
magnitude smaller than those of solids and that
lifetimes of S K vacancies are - 10 "sec. In
this experiment the incident beam (S")does not
have initial K vacancies; incidentally, this is al-
so reflected in the virtual absence of the radia-
tive-electron-capture peak.

I et us consider MO x rays with an energy E„
~ &„ for which the production cross section, crMo,

has been worked out for transitions with the as-
sumption that a vacancy exists prior to the colli-
sion. ' However, since vacancies are produced
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during a collision, MO x rays may already occur in that same collision; in this case, the cross sec-
tion for spontaneous and rotationally induced transitions is given by

d(r~o~'i/dE„= 4n&g(M'c') ' fy(&, &g)i'& d&,

5 = f"Z(t)[&(t)/h+ 2 Q(t)x] P„ex.p((t/8) J' [E(t') E„-]dt' ddt,

= 0 22yvo(~0'ru~ys) i ~ ui (2)

where v„ is the radiative lifetime of the vacancy
in the ideally united atom, and ~ is an average
over the change of transition frequencies as a
function of internuclear separation during the col-
lision. It is illustrative to compare f, with the
corresponding double-collision fraction, f„from
Ref. 5:

f,/f, =mR„Nvv cu y /y~o,

where v, is the radiative lifetime of the vacancy
in the undisturbed projectile ion and N is the tar-
get density. For 48-MeV S on Ne we measure a
fraction f, =4.4x 10 '. Evaluation of Eq. (2) with

no =0.25, v„= 7x 10 "sec,' and, according to the
prescription given in Ref. 5, v'v =4x 10" sec '
yields f, = 1.2x 10 y~o/yi, so that reasonable
agreement with experiment would result for y~o/

where o. =e'/hc, and I'(t), &(t), A(t), and
are vacancy amplitude, MO transition energy,
internuclear rotation frequency, and dipole tran-
sition matrix element, respectively. For con-
stant E one can add contributions from spontan-
eous and induced transitions incoherently; fur-

. thermore, if a vacancy is brought into the colli-
sion, I' is unity and o~o&'& from Eq. (1) becomes
essentially identical with 0» from Hef. 5. A
quantity easily measured in experiments is the
ratio between projectile and MO x rays with &„)E„In a .gas target, and for constant I' (see be-
low), this ratio can be expressed by f,= a~oy~o/
mR„'voyl, where R„ is the united-atom K-shell
radius, and ~, is the average fluorescent yield
of the projectile K vacancies; y~o and y~ are
those fractions of vacancies which can give rise
to MO x rays (in the sa,me collision) and projec-
tile x rays, respectively. These two fractions
are not necessarily equal: For example, vacan-
cies could be formed at internuclear separations,
R, which are too large to allow any subsequent
MO x-ray decays, and vacancies created early in
the collision at sufficiently small impact param-
eters contribute to MO x-ray production, but can
be transferred out of the projectile later in the
collision. The ratio f, 'P due to spontaneous tran-
sitions then becomes

yi = 0.36. When we take the same ratio y~o/y~
for 48-MeV S on Al, we obtain f,/f, = 0.5 (f,
= 5x 10 ', f,= 2.7x 10 '); this implies that in the
present experiment single- and double-collision
processes are roughly of equal importance. This
is clearly corroborated by our data, since the
fractions measured in Al (4x 10 ') and Ne (4.4
x 10 ') are close to each other.

The fraction f, decreases strongly with in-
creasing Z; contributions due to spontaneous
emission scale as' f,~ (v/Z')'I', where v is the
ion velocity. It is a question of major interest to
specify general conditions for which the single-
collision process becomes dominant. This re-
quires careful analysis of the ratio y~/yi, i.e. ,
of the actual single-collision mechanisms. Let
us first consider K-shell-vacancy production in
symmetric systems (Z, =Z,), where we distin-
guish ionization processes along the following
orbitals: (A) united ls at small R, (B) undis-
turbed ls at R ~ R~o, (C) molecular 2po, and

(D) 2pn with rotational coupling to 2pv at small
R. One must also allow for Demkov-type vacan-
cy transfer' between target and projectile 1s
orbitals which is expected to occur near R =R~o,
where R~o is the maximum internuclear separa-
tion for which MO effects can develop. All four
processes A-D can give rise to characteristic
x rays, but only A and B can contribute to E-
shell MO x rays withE )S .

For the largest velocities near v, Z for which
MO effects can occur, Coulomb ionization of un-
disturbed K electrons with binding energy &~
taXes place mainly at separations near Rc = hv/
&~ which reach or exceed R~o. In this case, we
can calculate f, from Eq. (1) with F = const and
processes B and C dominate over A and D. It
may further be deduced that with adequate con-
sideration of Coulomb-ionization and Demkov-
transfer probabilities the ratio y~o/y~ will not
be too small compared to unity and may be esti-
mated as y~o/yi) 0.2. Evaluation of Eq. (3) then
shows that f,)f, should be realized for values
of 2 as low as -10.

In the present S-Ne experiment, we have v

=0.48v, Z and MO x rays come mainly from proc-
ess B. The ratio of ionization cross sections for
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processes 8 and C from the sealed Born approx-
imation is close to 4', , and the Demkov-transfer
probability [Is(Ne)-Is(S)) is 0.1.' This yields an
approximate theoretical estimate @Mo/yr —-0.25
which is compatible with the value 0.36 deduced
from experiment.

For lower collision velocities, decrease of R c
causes process 8 to fade away, whereas D will
be more influential. Since the sum of cross sec-
tions for processes D and C becomes much larg-
er than the cross section for A almost all & va-
cancies which emerge from the collision are pro-
duced by molecular effects and have never exist-
ed in the united K shell at R (R Mo. Thus, yMo/y~
will be drastically reduced especially for the high-
er MO x-ray energies near E „. The ratio yMo/y~
will then reflect the cross-section ratio of total
K-vacancy production and direct Coulomb ioniza-
tion of the 1so orbital with binding effects taken
into account. It will then become increasingly
difficult to observe single-collision K-shell x
rays for any Z in most of the adiabatic collision
range. "

It is interesting to point out that in low-velocity
collisions 1so vacancies are created at small R

so that F(t) is nearly zero for the first half of
the collision. Solution of Eq. (1) for & „)&„ then
predicts that the width parameter, H, ' of the x-
ray tail becomes almost precisely twice as large
compared to cases where a vacancy is already
present before the 1so MO is formed. Experi-
mental tests of such an effect would contribute to
our understanding of vacancy formation process-
es in heavy-ion collisions.
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It is proposed that amplified spontaneous emission in the soft-x-ray region can be ob-
tained using inner-shell population inversions arising from the Auger effect. I treat
Na+ and show that with present-day technology it appears possible to generate a pulse of
10 ' to 10 J in less than a nanosecond at 410 A. The possible effect of interatomic
Auger processes in the solid is discussed but high-electron-density effects are not ac-
counted for.

In the past several years many schemes for
producing x-ray lasers have been advanced. ' '
The schemes differ in their treatment of Auger
widths. A large Auger width for the upper lasing
level has two detrimental effects. It lowers the
gain cross section

where X is the wavelength of the transition, A is
the radiative transition rate (A = I/'T„= I'„/h),
~v is the natural linewidth [av = (I', + I', )/AJ,
and I', and I', are the total widths of the individ-
ual levels. In addition one has an equation for

the number of inner-shell vacancies per unit
volume,

dN/dt =P —NI'/ff,

where I' is a pumping term. The solution N
= (kP/I')(1 —e '~" ) clearly indicates that P must
increase linearly with I' to attain a given number
density.

The idea advanced here is to use the Auger ef-
fect to produce an inner-shell population inver-
sion. In an Auger transition certain final-state
terms are preferentially populated. F( such
an inversion in final-state terms to be useful,
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