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Restrictions concerning the chiral structural of the! AS! =1 nonleptonic weak Hamilton-
ian are derived by studying kaon and hyperon decay amplitudes via current algebra and
partial conservation of axial-vector current.

There appears to be increasing motivation for extending the structure of the basic currents which un-
derlie weak interactions. The nonleptonic M = 2 decays have thus far resisted theoretical efforts to ex-
plain both their apparent lack of suppression by sin8, cos8, and their dominance over accompanying
Al =

& transitions. "' Effects seen by Cline in neutrino experiments' and the large e+e annihilation
cross section measured by Augustin et al.' suggest the existence of quarks with hitherto unobserved
"flavors. " Such particles would naturally be expected to contribute in some manner to the weak cur-
rent.

In view of this, investigation of the basic structures of weak currents is presently an active research
area, and probably will remain so for some time to come. It is therefore important to be cognizant of
constraints placed on any model of the weak interactions by existing experimental data. In this Letter,
we discuss implications of the fact that a matrix element describing a particular decay mode is often
a coherent superposition of isospin and/or of partial-wave amplitudes, Thus, the relative phases be-
tween contributing isospin and partial-wave channels are experimentally observable quantities. This
knowledge can be used to test the merits of competing models of the hS =+ 1 nonleptonic Hamiltonian.

In order to present our ideas in the context of a specific example, we shall at points refer to a mod-
el recently suggested by De Rujula, Georgi, and Glashow (DGG). ' However, general consequences of
our study will be presented as well.

In an attempt to solve some of the problems alluded to above, DGG suggest modifying the convention-
al charged weak current,

8"=lPya(l+ys)(Xcos8+X sin8) +6"y (1+y5)(-X sin8+X cos8) +2 y"(1+y5)e +l7&ya(1+y~)p, ,

by appending a right-handed term
J'" =J"+5"y (1-y )X, (2)

which is charm changing and hence does not affect the structure of bC =0 P-decay phenomena. The ef-
fective Hamiltonian for nonleptonic 4C =0, 4S =+ 1 decay,

X = (G cos8/~2(6"y" (1+y,)X%y„(l —y, )6"

+sin8[6'y" (1+y,)XXya(l+y5)(P -(P'y (1+y5)X'Xya(l+y5)(P']), (3)

then contains a bZ = 2 term which is dominant
over its M =2 partner by cos0 and is no longer
suppressed by the factor sin8. In addition, the
new current appears consistent with other phe-
nomena such as the copious production of p. p.

+

events in neutrino experiments' and the K-to-m
ratio in the annihilation experiments, 4 both of
which are anomalous within the framework of the
conventional theory. However, as we shall see,
there are difficulties with this kind of model hav-
ing to do with its transformation properties un-
der chiral SU(4) gSU(4).

Let us begin our analysis with the following ob-
servation. A general AS = 1 current-current mod-

el of the nonleptonic Hamiltonian can be construct-
ed out of basic operators

where i and j denote the chirality (either right or
left handed) and x designates some given quark
flavor. It is useful to characterize such forms
by means of their transformation properties un-
der chiral SU(2)SU(2). Except for the case
where quark x caries isospin and it j, the oper-
ator O, i" transforms as (0, m) or (m, 0), where
m can take on the values —,

' or 2. One method for
probing the representation content is to employ
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[F,', a ]=[F„II„']+[F„II'];
class II,

(4a)

partial conservation of axial-vector current in
nonleptonic kaon decay. By taking a single soft-.
pion limit, we can relate M= 2 (—,') parameters of
the K- 3m system to experimentally determined
bI =-,' (p) K 2v amplitudes. When this calcula-
tion is performed with the conventional nonlep-
tonic Hamiltonian (i,j- left handed and x is a 6'-
type quark), the results are quite satisfactory
for both amplitude and slope. ' Unless this is to
be regarded as fortuitous, we can conclude the
following:

(1) The bI = —,
' Hamiltonian is predominantly

composed of operators 0„." with the same repre-
sentation content. Otherwise, the operator which
results after commutation bears no relation to
the original, so that comparison with experimen-
tal values is precluded (an entirely analogous
agreement can be made for the M = 2 Hamilto-
nian).

(2) The nonleptonic Hamiltonian cannot be pre-
dominantly composed of operators 0,&" trans-
forming as (m, n) with both m, nw 0. Otherwise,
after commutation it would not maintain its orig-
inal isospin structure, This would undermine any
attempt to predict&I=~ (a) effects inK 3m from
corresponding LU = —,

'
(2) terms in K- 2w.

Hereafter, we shall consider only candidates
for the nonleptonic Hamiltonian which do not vio-
late conditions (1) and (2). Writing

II~=H~ +II ~,
where 1, 3 refer, respectively, to the LU= —,', &

components of the Hamiltonian, we define four
classes of models via their commutation proper-
ties with F,' (i = 1,2, 3): class I,

relative phase between K- 2m and K- 3m ampli-
tudes is unobservable. However, in both the K- 2m and K- 3m systems there exist small but de-
tectable LA=2 effects, which can be related by
means of the current-algebra methods discussed
above. Assuming a linear expansion in energy
for the K- 3m amplitudes, we find'

1 —J —1 for class I, IVI+2+1 I"++- 1
2 I'+-0

-1 for class II, III,(
1+/
1 +2/

(- ~27y for class I, IV

2 ~++- J+ ~27y for class II, III,

where I„,and ~„,are, respectively, the rate
(divided by phase space) and slope for the decay
K-m'm n', and

&2A—(Z' ~'~')
~ 2A(xo- ~+v-) A(&CO--vovo)

= —0.032+ 0.001,

The experimental and theoretical values are corn-
pared in Table I. For the decay rates there is
good quantitative agreement for class-I and class-
IV models but strong disagreement for models
belonging to class II or III. In the case of the
slope, which being a ratio of coefficients is much
more sensitive to omitted terms of 0((m, /m, )'),
none of the predictions agree with the experimen-
tal value, but again models in class I or IV have
the correct sign whereas class-II or class-III
models do not.

A similar analysis can be performed for non-
leptonic hyperon decay. ' Here the S-wave ampli-

[F,H ] = —[F;,H ']+[Fq, H 3];

class III,

[F,.', a.] =[F,, II„']-[F„a„'];
class IV,

[F,. ', a„]=-[F„a„']-[F„a'].

(4b)

(4c)

(4d)

TABLE I. E'- 37t observables. I;~, and ~,~, are, re-
spectively, the decay rate with phase space divided
out, and slope parameter in the Dalitz plot for the re-
action E m'Tt ~x'. The numerical values appearing in
the theoretical columns are based on the model of Ref.
7, and the division into classes pertains to Eqs. (4).

Note that the conventional model belongs to class
I while the DGG version is (approximately) a
member of class II.'

In order to understand the distinction between
these classes, we return to an examination of the
nonelptonic decays of the kaon. Here, as long as
only ~ = —,

' effects are considered, one cannot dis-
tinguish between any of the four classes since the

r4 4-

2r+-0
~ 4-RR

2~++

0.215 —0.172 0.251 + 0.038

0.43 —0 43 0.219+0.051

Theoretical
Class I, IV Class II, III Experimental
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tude is given by the commutator

&~"Iff.l ). ,=„&all~.', If„~' ll~),

while the P-wave amplitude is assumed to be given by the hyperon pole terms, '

(10c)

e, again favors

e not definitive
the AI= 2 ampli-

romagnetic in
r conclusions in
s concerning LU

s should be of
so one would have
od quantitative

results for dd =
& terms obtained in Ref. 6 for

both amplitudes and slopes is fortuitous. (2) Pole
terms constitute only a portion of the P-wave hy-
peron amplitudes. However, simple 2+ pole fits
indicate that this is the dominant component of
the P-wave amplitudes' so that the overall sign
should be correct.

What then can be concluded in general from our
analysis& We have obtained several conditions
regarding the structure of the I &Sl =1 nonleptonic
Hamiltonian. I et us discuss them in order of
increasing "tightness" of the constraints which
they impose.

First, from the rather successful prediction of
the structure of the K- Sm amplitude in terms of
experimental K- 2g parameters, it follows that
the commutation properties indicated in Eqs. (4)
are approximately valld-

Secondly, from the comparison of BI=2 and M
=

& amplitudes, we require that the Hamiltonian
belongs either to class I or to class IV in order
to avoid the consequences of opposite signs for
these terms after commutation, e.g. , as occurs
for the DQG Hamiltonian.

Finally, although the theoretical justification
for this conclusion is weaker than the others we
have given, we require from the comparison of
hyperon 8- and P-wave decay amplitudes that the
AI = 2 Hamiltonian should be either from class I
or from class III.

Thus, models of class I, such as the conven-

'I

Ss = -v 2SO+S+ —S

Ps = -v 2PO+ P+ -P

we predict for classes I and IV,

+ 3=+1.48,
3

and for classes II and III,

P+83
y 48

8 P3

TABLE II. Hyperon S-wave and I'-wave nonleptonic
decay amplitudes. Each entry gives the watio of P-
wave to S-wave amplitudes. See Ref. 9 for values of
SU(3) parameters employed here.

Theoretical
Conventional DGG Experimental

A-n~'
g~+ ~p~0

nr

5.2
—5.4
—0.88
—2.6

—5.2
5,4
0.88
2.6

6.74+ 0.55
—8.14+ O.5O
—0.34+ O. O4
—3.86+ 0.73

'The result for this mode depends far more sensi-
tively than the others on our choice of pole model and

accompanying parameters. We include it for complete-
ness.

— (~'), (~)
Pgg+ sly sly m~ m~+ fsy Pls

where &plII P 'I a)=—SsJr(p')u(p) and the phase of

E„g„&„is fixed by the Goldberger-Treiman rela- while the experimental value is"
tion. In this approximation, the same matrix ele-
ments appear in both 8-wave and P-wave ampli- + 3=+0.81+ 0.48,
tudes so that (1) because of the sign differences S„P3

in the commutators in Eqs. (4a)-(4d), the rela- which, although hardly conclusiv
tive phase of the dominant LI = 2 S-wave and P- class-I and class-IV models.
wave amplitudes is opposite for models in class- Of course, our conclusions ar
es I, III to that for classes II, IV. The experimen- since (1) a considerable piece of
tal situation is indicated in Table II, which favors tudes might conceivably be elect
classes I or III. Also (2) the relative phase of S- origin. This would invalidate ou
wave M =

& and M = —,
' terms is opposite in class-, both the kaon and hyperon sector

es I, IV to that in classes II, III models. That is, =-', terms. However, such effect
defining for Z decay (subscripts +, —,0 label the O(o. /m) and thus negligible. " Al
charge of the decay pion) to assume that the reasonably go
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A.y (1+y,)xxy (1+y,)jf, (12)

where x is an SU(2) singlet quark which may or
may not coincide with the 6". If x is the 6", then
this term is suppressed by sin8, although if the
X6" current is right-handed this may be some-
what compensated by enhancement eff ects calcu-
lated within the renormalization-group frame-
work. " If, however, x carries some new flavor,
this left-handed X quark cannot be accommodated
within the usual gauge-theory framework, and the
existence of an additional weak interaction medi-
ated by some new gauge boson must be assumed.
It is not our purpose here to construct such a
model, however, but merely to emphasize some
strictures on its form.
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