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A nonequilibrium molecular-dynamics method of computing the dynamical response is
presented. It is applied to the mobility of a charged particle in a Lennard-Jones liquid
and the results agree with those computed from the Green-Kubo formula and with exper-
imental data on argon. A discussion is given of the linearity of the mechanical response.
The linear-response term is evaluated explicitly by a perturbation formula and the char-
acter of the nonlinear terms is briefly considered.

In this Letter we present a method of computing
directly by molecular dynamics (MD) the full dy-
namical response of a model system of interact-
ing particles to an external disturbance. The
method is simply an exploitation of Liouville’s
theorem and of the possibility offered by MD of
computing the perturbed mechanical trajectory in
phase space. Let us define in the 6N-dimensional
phase space I of our system the complete Hamil -
tonian, including the perturbation, as

H(p,q, ) =Hyp,q)+He (P, q, 1), (1)

and let a(p, g) be a dynamical variable on I. If
He(p,q,1)=0for {0, p,=Cexp|-H,/k,T] is
the equilibrium distribution function of the unper-
turbed system, and p(p, ¢, f) is the one corre-
sponding to the complete Hamiltonian (1), ob-
tained by solving the Liouville equation with the
initial condition p(p, ¢q, 0)=p,, then we can write
that p(p, q, 1)=S(¢, 0)p,, where ST(#,0) is the ad-
joint of the complete time-evolution operator. In
such conditions, as a consequence of the measure
invariance of phase space under natural motion,
the time-dependent average of the dynamical
variable a(p, q) in the perturbed system can be
expressed in terms of the equilibrium average of
the quantity a(p(2), ¢(£))=S(¢, 0)a(p, q). In fact we
have in an obvious way

(a, p(t))= e, $T(¢, 0)p,)= (S(, 0)a, p,)- (2)

By the MD technique we can obtain the nonequilib-
rium average {a, p(?)) by starting at =0 from
various configurations of the equilibrium trajec-

tory, given by the simple H, evolution, and com-
puting the complete H evolution of the system be-
tween {=0 and ¢=¢#

(a, p(t))=(S(t,0)a, p,)
N
= HmN™' ) Sy(,, 08U+ 4, t)er,  (3)
N> n=1

where Sy(Z,,0) is the H, time-evolution operator
and the times #, correspond to reasonably uncor-
related subsequent configurations of phase space
that the system reaches along its equilibrium
path.

The mobility of a charged particle in a Len-
nard-Jones (LJ) liquid has been determined in
this way, taking into account ion-induced dipole
interactions but neglecting dipole-dipole terms.
We have followed closely the methods used in the
MD “experiments” of Verlet and co-workers.’
The sample used consisted of 256 particles. The
pair potential between the neutral particles was
taken as the LJ interaction ®p;(7,;;), with param-
eters appropriate to argon (0=3.405 A, ¢/k;
=119.8 K), and that between the single charged
particle and the other 255 as the LJ interaction
modified by the charge-induced dipole term:

V(r; ) =@.;(ry;) - %aezru'ﬁl'

For the value of the atomic polarizability o we
have assumed 1.6 A%, The LJ interaction was
truncated at 2.50 and the electrostatic interaction
at 3.30.

In implementing the method, the MD runs are
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broken into “segments” lasting typically for 70
time steps of 2x107 sec. The trajectories of
the particles are computed twice in each seg-
ment, starting from the same initial configura-
tion. In one case the calculation proceeds in the
normal way, and is continuous throughout all seg-
ments; in the other one a constant force of order
1 eV cm ™ is applied to the ion. The drift velocity
of the ion induced by the applied field is computed
as a function of time simply by calculating the
difference of the ion velocity in the perturbed and
unperturbed trajectories, averaged over all seg-
ments making up the run. In fact, remembering
that at equilibrium (v ®, p,)=0, we have

(S(HT O =F @, p)=(S(t)}7 @, p,)
=(V O, p(8)) =1 L(t). (4)

The mobility constant is given by U ()= uF at
vanishingly small F.

The force we applied is about 1077 of the mean
LJ force. It is only the subtraction operation
which appears explicitly in the first term in (4)
which makes possible the calculation of the drift
velocity induced by such a small external field in
a MD run of realistic length. The mobility con-
stant is then obtained from the value which the
drift velocity approaches after the relevant sys-
tem relaxation time.

The method was tested first by computing the
mobility constant of a neutral particle in an or-
dinary LJ system, applying to the particle an ex-
ternal force as in the calculations described
above. The calculated mobility was in very good
agreement with the diffusion constant obtained
previously by integration of the velocity autocor-
relation function (VAF).

The numerical success of the method is due to
the correlation between the two mechanical tra-
jectories in each segment, the perturbed and un-
perturbed one. On the other hand it is known?
that if the system is ergodic the two trajectories
will depart exponentially from each other as time
increases and the respective values taken on
them by the observables of the system become es-
sentially uncorrelated. For this reason the meth-
od is inappropriate for the investigation of rather
long-time phenomena. The growth with time of
the distance between the corresponding phase-
space points on the two trajectories has been
found to be very accurately exponential in our
system of 256 particles, following a short initial
period in which the component containing the sys-
tematic response dominates. The coordinate-

790

TABLE I. Mobility of positive ions in liquid argon.

I
(10" em?® v 1 gec™ )

T P

(K) (g cm™9) MD expt
85 1.46 : 5.2 .-
90 a e 6.5

112 a e 13

113 1.22 13.4 ..

3At vapor pressure.

space and velocity-space terms are found to have
an identical characteristic time, which is of the
order of the mean time between collisions.

In Table I the results for the ionic mobilities
are compared with the experimental results of
Davis, Rice, and Meyer? for the mobility of posi-
tive ions in liquid argon. The agreement is satis-
factory, suggesting that the potential model used
is adequate and that the interaction between the
induced dipoles plays a minor role. The out-
standing feature we observe is a very large re-
duction of the ionic mobility with respect to that
of the neutral atom, by a factor of 4 at the triple
point. Experimentally a factor of 5 is reported
at 90 K.® This decrease of the mobility of the
charge carriers is commonly attributed to the
solidlike structure induced around the ion by the
electrostriction forces. We have actually ob-
served the formation of this structure. The pro-
cess takes a rather long time (~107!° sec) after
turn-on of the electric interaction and only when
the radial distribution function around the ion has
reached its stable solidlike shape can one begin
the computation of the dynamic properties. The
structure is very regular and stable in the dense
liquid and the time spent by the ion neighbors in
the respective shells is remarkably long. They
are precisely located in a regular icosahedral
pattern centered at the ion. The increased rigid-
ity of the environment of the ion is reflected in
its short-time dynamics as a rather rapid oscil-
lation, giving rise to a characteristic double-
peaked structure in the velocity power spectrum,
i.e. in the Fourier transform of the VAF C (/).
For small values of the applied force the formal-
ism of linear-response theory is applicable. In
our method the VAF is obtained from the transi-
ent time-dependent behavior of the response in
the ionic velocity as it approaches its asymptotic
value. It is easy to show in fact that, within the
framework of linear-response theory,* the mean
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value of the ionic velocity (Vv ®, p(?)) is propor-
tional to the time convolution integral of the VAF
and the time-dependent external force. If, as in
our case, f(t)=i?"09(t), where 6(?) is the step func-
tion,

FO, p(0))=F, ;' c(rdr (5)

and the time derivative of the drift velocity yields
the VAF. It is obvious from (5) that if ¥(#)=F,6(¢),
a p(?) displays C(?) itself rather than its integral.

The result for (¥ @, p(t)) obtained in a typical
run consisting of 200 segments is shown in Fig. 1,
where its three spatial components are plotted.
Only the component parallel to the applied force
displays a systematic time behavior. The other
two components are a measure of the residual
statistical noise, which clearly grows with time.

For comparison we have also computed the
drift velocity as the integral of the equilibrium
VAF of the ion. The results of the two methods
‘agree well, but the advantage in computing the
actual response is that the statistical noise on a
run of given length is very much smaller than in
the standard calculation.

For this reason it is clearly desirable to apply
the method to the computation of the collective
response of model systems to the imposition of
spatially varying force fields, for which the
noise problem is always severe. Useful informa-
tion has in this way been obtained on the collec-
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FIG. 1. Computed velocity response, ﬁD(t), in arbi-
trary units, in the linear region for positive ions at the
triple point of argon. The amplitude of the force, ap-
plied in the x direction, is of the order of 1 eV/cm;
that of the response is about 10™7 of the rms velocity .
The components of Uy(#) are identified as follows:
Upy(t)s =3 Upy(t), — =5 Up(t), — — —.

tive dynamical properties of molten alkali hal-
ides.® In particular it was found that the compu-
tation of small cross-correlation functions be-
comes feasible because the spurious contribu-
tions to the cross correlation arising from spon-
taneous fluctuations are eliminated.

We now discuss the relation between micro-
scopic motion and statistical linearity.® The cal-
culated response is found to be linear with F,
for all times during a segment. Deviations from
mechanical linearity of the order of a percent
are detected at the last steps of the segment
only when F, reaches values of order 10°eV
cm™, What is surprising about this result is
that the response continues to be mechanically
linear after the particles have undergone a few
collisions and have fully reacted to the perturba-
tion. Nonlinearity is introduced in the case of
continuous potentials through higher-order terms
in the Taylor expansion of the potential energy in
the perturbed trajectory. These terms become
important at long times as the distance between
the paths in field F and in zero field increases.

In fact it is possible to compute the mechanical
response by first-order perturbation theory with-
out leaving the equilibrium run. This we have
by adapting to MD the formal development pre-
sented by Hubbard and Beeby.” Let us define by
GW=X®_X §=1... N, the differences be-
tween the coordinates in the perturbed and unper-
turbed cases, with @ ¢)(0)=0 and 4 ¢(0)=0, and
let U({x}) and K¢)(#) be the potential energy of
the system in the {x} configuration and the exter-
nal force, respectively. The equations for the
evolution of the «’s are

. 9 =0 . )
mi (D= A{_%;}+K(’)(t), i=1,...,N. (6)

In the linear approximation A indicates the first
term in the Taylor expansion of the difference be-
tween the forces in the perturbed and equilibrium
configurations. Note that this linear term con-
tains second derivatives of the potential energy.
It is now easy to integrate (6) during the compu-
tation of the equilibrium trajectory so that the
linear response can be obtained without having
to compute the trajectory twice. With a small
enough applied force we have obtained complete
numerical agreement between the directly com-
puted response and the perturbation result.
Finally, an interesting application of the meth-
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od is the study of nonlinear effects: Nonlinear
terms can actually be isolated and averaged
separately. We have not yet systematically ex-
ploited this possibility. We have verified only
that in the expansion of the drift velocity in terms
of the applied force, only the odd-power terms
contain systematic contributions to the statistical
average, as is obvious on the grounds of sym-
metry. The even-power terms are present only
in the mechanical response. As a consequence,
since the first nonvanishing term beyond linearity
is quadratic for the mechanical response and
cubic for the statistical one, the latter must have
a wider linearity range.

We acknowledge stimulating and helpful discus-
sion with A. Rahman, F. P. Ricci, K. Singer,
and, particularly, I. R. Mc Donald.
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Brillouin-scattering measurements on acoustoelectrically amplified flux are used to de-
termine the room-temperature frequency dependence of the lattice attenuation of ultra-
sonic shear waves in CdS up to a frequency of 7 GHz. The results show clearly a transi-
tion from the Akhiezer f? regime to the Landau-Rumer f ! regime. The transition frequen-
cy provides an estimate of about 35 psec for the average lifetime of the thermal phonons

- involved in the ultrasonic attenuation process.

In this communication we report on Brillouin-
scattering measurements of room-temperature
lattice attenuation of slow shear waves propagat-
ing perpendicularly to the ¢ axis in CdS. By ex-
tending the measurements up to 7 GHz, we were
able to observe a clear transition from a quadrat-
ic frequency dependence (f2) of the lattice atten-
uation o, at low frequencies to a linear depen-
dence at higher frequencies. We belive that this
corresponds to a transition from the Akhiezer
regime’ to the Landau-Rumer regime,? and as far
as we know this is the first time that the two re-
gimes have been observed (at a single tempera-
ture) in one and the same material. The transi-
tion frequency is of considerable interest since
it provides an estimate for the average lifetime
7 of the thermal phonons involved in the ultra-
sonic attenuation process.® The Akhiezer f? law
is expected to hold when f «<1/2nr7. For f>1/2n7,
on the other hand, the energy %f of the ultrasonic
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phonons becomes large compared to the uncertain-
ty (h/2n7) in the energy of the thermal phonons
with which the ultrasonic phonons interact. Selec-
tion rules resulting from energy and momentum
conservation are then imposed on the phonon-pho-
non interaction, changing its nature and its fre-
quency dependence. This is the range in which
the lattice attenuation is expected?® to increase lin-
early with frequency (the Landau-Rumer regime).

The frequency dependence of a; has been mea-
sured in many materials*® and an f* dependence,
as well as other powers of f ranging between 1
and 2, have been reported. As to shear waves in
CdsS, extensive data®"'® are available below about
4 GHz, the latest and most accurate results®
exhibiting clearly an Akhiezer f2-law dependence.
No measurements were reported so far at higher
frequencies.

The measurements to be presented here were
carried out on acoustoelectrically amplified



