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Laboratories in checking some of our source ma-
terials for radioactive contamination.
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We present an exact solution to the nonlinear field equations which describe a classi-
cal excitation possessing magnetic and electric charge. This solution has finite energy
and exhibits explicitly those properties which have previously been found by numerical
analysis .

Recently 't Hooft' has proposed a model for a magnetic monopole which arises as a static solution of
the classical equations for the SU(2) Yang-Mills field coupled to an SU(2) Higgs field. The model has
been extended by Julia and Zee' so that the monopole becomes a dyon, possessing both electric and

magnetic charge. The purpose of this note is to present an exact analytic solution for a particular ver-
sion of these models.

The Lagrangian density for the model is'

where
a 8 Q a g A a++~abcA bA c

pp p p p p p p

and

(2)

The field equations in the static limit where all time derivatives are zero are

a+g&abcA bEpfc efabcp&b+cj
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s, II"+ee"'A„'ll"'= -p'q. '+x(q'cp')(p'

The Wu- Yang~-'t Hooft- Julia-Zee Ansatz is to seek a solution of the form

A, '=e„,r, [1 K-(r)]/er,

A; =r, J(r)/ey,

y' =j,H(r)/ez

(5)

(6)

(7)

(8)

Fields which satisfy Eqs. (4) and (5) also produce an extremum of the canonical Hamiltonian obtained
from (1):

When expressed in terms of K(r ), J(x), and H(r) this becomes

4m ",2 (K —1) JK (rJ' —J') H K (xH' -H)2 MPH XH~
(10)

and the field equations reduce to.

/ K» =K(K 1) yK(H& J' )

r J —2JK

r'H" = 2HK'+ (X /e')(H3 —C'y'H),

(12)

(13)

K =Cr/sinh(Cx),

J=O,

H =Cx coth(Cx) —1,

(14)

(15)

(16)

which therefore constitutes an exact solution of
't Hooft's model for A, and p,

2 both set equal to 0.

where C = pe/v'A. .
We seek solutions such that the square of the

Higgs field goes to a constant as r -~. Then
from Eq. (13) we see that H/r „=„+C. For def-
initeness we choose the positive sign. The par-
ticular version of these equations that we will
consider is to take X-0 with C fixed. Then the
requirementH/z„=„C is no longer forced upon
us. Nevertheless, we shall look for solutions of
Eqs. (11)-(13)for which it continues to be valid.

It is easy to verify that a solution of Eqs. (11)-
(13) with X =0 and regular boundary conditions at
x =0 and ~ is given by

Furthermore, by choosing

K =Cy/sinh(Cr),

J'= sinhy[Cx coth(Cy) —1],
H = coshy[Cr coth(Cx) —1],

(17)

(18)

we have a solution of our version of the model of
Julia and Zee with H/r „=„Ccoshy. Here y is
an arbitrary constant. Clearly the solution of
't Hooft's model corresponds to y = 0.

The reader may wonder how such a solution
was discovered. The answer is that if one seeks
trial functions with good boundary conditions for
a variational calculation, the hyperbolic sine and
tangent arise quite naturally. Substitution of a
few trial functions of this type in the equations
revealed that they were almost satisfied. With a
bit of "shimmying" the expressions (14)-(16)
emerged.

The exact solutions leave unchanged most of
the conclusions which have been deduced from
the numerical analyses. Specifically, let us in-
vestigate the magnetic monopole strength 4',
the electric charge Q, and the mass I of the ex-
citation we have found.

The Abelian electromagnetic field has been
identified by 't Hooft"' as

6:„p = S„(P'A„')— (8P'A„') —(1/e)e'"P'B„P B,y',
where y'=y'(y'y')"'. Using Eqs. (6)-(8) we have

2
~
=- &'g~pa=-&«'«

(2o)

(22)
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We see that our solution represents a point monopole of strength 4wg = —4m/e. In addition, since K- 1
as r - 0 there is a cloud of electric charge of amount Q = (4m/e)sinhy with no pointlike core. Thus the
solution represents a point monopole surrounded by a cloud of electric charge.

The energy or mass of the solution can be calculated from the Lagrangian density written in general-
ly covariant form as M = fd'r T"(i'), where

&""=(2/E- g)8 (SK-g )/eg „„=@~"'Z,"'+11~'ll"'+ gt' "g. (23)

We find the same expression for M as for K given by Etl. (10) except that the two terms with negative
signs have those signs reversed F.or the case A. =0, Eels. (12) and (13) allow us to write1, 2

J' K 1 d[J'(J' —J'/r)]
(24)

with a corresponding equation for the H terms so that

M = (4w/e') {—,'[H(P' -Z/r) +J(J' —J/r)] ~,
"+f, dr[K" + &(K' —1)'/r']].

The integral is easily evaluated with the result

(25)

M =(C/n) cosh'y, (26)

where a =e'/4'. The constant C governs the fall-
off of the Yang-Mills field as r- ~ and is thus
identified with its mass.

A comparison with the numerical results of
't Hooft and Julia and Zee is instructive. For y
=0 't Hooft finds M =(C/n)f(X/e'), where f var-
ies from 1.1 for A/e'=0. 1 to 1.44 for X/e'=10.
Julia and Zee compute f = 1.42 for X/e'=0. 5. We
find f = 1 for X/e' =0.

Secondly, Julia and Zee find for X/e'= 0.5 solu-
tions with Q =0.324e/o which correspond to y
=0.319 and 1.038, respectively. For such choic-
es of y we would find M = 1.10C/n and 2.56C/o. ,

respectively, while they find M =2.62C/o. and
2.86C/n, respectively.

A few concluding remarks concerning stability
are in order. Our solution appears to be unsta-
ble against changes in C since there is a contin-
uum of solutions, each with mass proportional to
C. But C is the only mass parameter in the the-
ory and so it sets the scale of length. Thus solu-
tions for different values of C g 0 are identical
with respect to the appropriate length scale and
hence can be considered stable, at least with re-
gard to changes in C,

Concerning changes in y it would appear on the
classical level that since the mass depends con-

tinuously on y, only y = 0 can lead to stability un-
less some classical reason can be found to quan-
tize Q = (e/ct) sinhy.
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