already partly occupied shell of 94 Mo and 96 Mo. This is in agreement with results from muonic atoms^{4,9,10} and measurements of isotope shifts of electronic atoms.^{11,12}

This effect may also be seen from the differences of charge distributions in Fig. 4. Here the charge distribution differences $\Delta\rho(\mathbf{r})$ times \mathbf{r}^2 of neighboring isotopes are compared to that of ⁹⁴Mo and ⁹²Mo (shaded areas). The addition of the two neutrons to the empty $2d_{5/2}$ shell of ⁹²Mo results in a polarization of the protons such that *more* charge from the inner region of the nucleus is moved *further* outward than by adding two neutrons to the already partially filled shell. In going from ⁹⁸Mo to ¹⁰⁰Mo another shell $(3s_{1/2})$ is filled and results in a noticeably different shape for $r^2\Delta\rho(\mathbf{r})$; it is somewhat broader than that of ⁹²Mo and ⁹⁴Mo, but coincides with it at large radii.

The author is very grateful for the overall support of all members of the Institut für Kernphysik der Universität Mainz under the guidance of Professor Dr. H. Ehrenberg. Part of the calculational work has been performed on the CD 3300 and on the TR 440 in the Rechenzentrum der Universität Mainz.

¹K. Merle, in *Proceedings of the International Conference on Photonuclear Reactions and Applications, Asilomar, California, 1973,* edited by B. L. Berman (National Technical Information Service, Springfield, Va., 1973), p. 889, and thesis, Institut für Kernphysik, Universität Mainz, 1975 (to be published).

²H. Ehrenberg, H. Averdung, B. Dreher, G. Fricke,

H. Herminghaus, R. Herr, H. Hultzsch, G. Lührs,

K. Merle, R. Neuhausen, G. Nöldeke, H. M. Stolz,

V. Walther, and H. D. Wohlfahrt, Nucl. Instrum. Methods <u>105</u>, 253 (1972).

³B. Dreher, J. Friedrich, K. Merle, H. Rothhaas, and G. Lührs, Nucl. Phys. A235, 219 (1974).

⁴R. Engfer, H. Schneuwly, J. L. Vuilleumier, H. K. Walter, and A. Zehnder, At. Data Nucl. Data Tables <u>14</u>, 509 (1974).

⁵The term "model-independent" has been used in different ways in the literature. Here it is used in the sense that the space of all physically resonable charge distributions which fulfill the rather weak and physically motivated constraints on the asymptotic behavior of F(q) and $\rho(r)$ is taken into consideration.

⁶R. P. Singhal, S. W. Brain, C. S. Curran, T. E. Drake, W. A. Gillespie, A. Johnston, and E. W. Lees, Nucl. Phys. A216, 29 (1973).

⁷Phan Xuan Ho, J.-B. Bellicard, A. Bussiers, Ph. Leconte, and M. Priou, Nucl. Phys. A179, 529 (1972).

⁸B. Dreher, thesis, Institut für Kernphysik, Universität Mainz, 1974 (unpublished).

⁹C. Chasman, R. A. Ristinen, R. C. Cohen, S. Devons, and C. Nissim-Sabat, Phys. Rev. Lett. <u>14</u>, 181 (1965).

¹⁰E. R. Macagno, S. Bernow, S. C. Cheng, S. Devons, I. Duerdoth, D. Hitlin, J. W. Kast, W. Y. Lee, J. Rainwater, C. S. Wu, and R. C. Barrett, Phys. Rev. C <u>1</u>, 1202 (1970).

¹¹H. Arroe and J. M. Cornwall, Phys. Rev. <u>117</u>, 748 (1960).

¹²R. Hughes, Phys. Rev. <u>121</u>, 499 (1961).

Anomalous Vibrational-State Distribution in N_2^+ ($B^2\Sigma_u^+$) after Charge Exchange of He₂⁺ with N₂⁺

J. J. Leventhal, J. D. Earl, and H. H. Harris

University of Missouri at St. Louis, St. Louis, Missouri 63121

(Received 16 June 1975)

We measure cross sections for N_2^+ ($B^2 \Sigma_u^+$) production in 5-eV He₂⁺-N₂ and He⁺-N₂ collisions by observation of emission in the first negative system of N_2^+ . For He₂⁺ the cross section is unusually large (~ 10 Å²) and the vibrational-state distribution shows primarily v' = 0 and 1, consistent with vertical ionization of N₂. He⁺ produces a much wider distribution, as do most other simple ions. Explanations for the large cross section and observed state distributions are proposed.

Production of excited N_2^+ in interactions of N_2 with helium and its ions (He⁺ and He₂⁺) has been studied extensively, primarily by observation of luminescence from a discharge in a mixture of the gases.¹ Recently a nitrogen-ion laser, operating at 3914, 4278, and 4709 Å in the first negative (1*N*) system of N_2^+ ($B^2\Sigma_u^+ \rightarrow X^2\Sigma_g^+$), has been reported² and, since this laser is pumped by the reaction

$$He_2^+ + N_2 - N_2^+ (B^2 \Sigma_u^+) + 2He,$$
 (1)

these charge-transfer processes take on additional importance. This paper reports the results of experiments in which spectra (1900-8500 Å) from

the products of He^+-N_2 and $He_2^+-N_2$ collisions at 5 eV were separately obtained. Since these experiments were performed with a mass-selected primary ion beam impinging on N₂ gas at low pressure, microscopic details of the collision processes are obtained. Absolute cross sections were measured for the most prominent features of the spectra, and the cross section for He₂⁺ charge exchange yielding product N_2^+ (B) is roughly two orders of magnitude greater than the analogous He⁺-N₂ process. Higher-resolution studies of the $\Delta v = 0$ and $\Delta v = -1$ sequences of N₂⁺ (1N) show that for He₂⁺-N₂ collisions N₂⁺ [$B^{2}\Sigma_{u}^{+}(v'=0)$] is the predominant product while He^+-N_2 collisions yield a distribution extending beyond v' = 10. For He_2^+ -N₂, the distribution is approximately that predicted from Franck-Condon factors³ between the target $N_2 [X^1 \Sigma_g^+ (v=0)]$ and vibrational levels of N_2^+ (B); this observation is contrary to the results of most studies of charge exchange in ion-neutral collisions⁴ below ~ 10 keV.

The apparatus⁵ provides an electron-impactproduced, magnetically mass-selected ion beam directed into a collision cell containing N_2 gas at 1.5 mTorr. For He⁺ the electron impact energy was maintained below ~ 50 eV ensuring groundstate ions; He_2^+ ions were formed under conditions⁶ which yield primarily $X^2\Sigma_u^+$ (v = 0). Photons from the collision cell enter a Jarrell-Ash 0.25-m scanning monochromator with interchangable 1180-line/mm gratings blazed at 3000 and 5000 Å; filters were used, where appropriate, to suppress second-order lines. The detector was an EMI 9659 QAM photomultiplier tube and single-photon counting was employed. Complete spectra were assembled by computer normalization of overlapping portions of adjacent scans; data were corrected for the efficiency of the detector and for grating, window, and filter transmissions.

Figure 1 shows spectra obtained with 20-Å resolution (half width at half-maximum). Ordinates, U, are in the same units, photons per ampere per second. Cross sections, σ , for processes which yield intense emission in the He₂⁺ system are indicated. These cross sections were calibrated by observation of H α emission from 100-eV He⁺-H₂ collisions and normalization to the value reported by Isler and Nathan.⁷ For comparison, emission which appears to result from the $\Delta v = +1$ sequence in the He⁺ system is shaded; the cross section was calculated after subtrac-

FIG. 1. Emission spectra from $\text{He}_2^+-N_2$ and He^+-N_2 collisions at 5 eV taken with 20-Å resolution. The insets in the He_2^+ -produced spectrum are higher resolution scans of the $\Delta v = 0$ and -1 sequences of N_2^+ (1N). Band heads are from Ref. 1c. The known emission systems of N_2^+ are indicated in the lower spectrum.

tion of the intensity which appears to be from other transitions. The pertinent lifetimes⁸ are short enough to permit the assumption that all decays occur in the detection region. Aside from the large difference in the luminescence cross sections, the $He_2^+-N_2$ spectrum shows few prominent features other than the indicated sequences of N_2^+ (1N), while He⁺ impact produces the 2N system as well as a number of previously reported, unresolved N2⁺ emissions.^{9,10} Also present in the He^+-N_2 spectrum are "tail bands" of N_2^+ (1N). These bands, which originate in high vibrational levels of the $N_2^+ B$ state (v' > 10), have been observed by Brandt, Ottinger, and Simonis^{4a} in low-energy Ne^+ -N₂ collisions but not from Ar^+ -N₂ collisions. They attributed the tail bands in the Ne^+-N_2 spectrum to the high recombination energy of Ne⁺ (21.6 eV), which permits population of the necessary v' levels; observation of tail bands in the present work is consistent with this interpretation since He⁺ has a comparably high recombination energy (24.6 eV).

There is a significant difference between the two processes studied here. The repulsive He-He potential causes a three-body final state for the He₂⁺-N₂ reaction; thus the products have available more phase space than the two-body final state of the He⁺-N₂ process. The energetics are favorable for selective population of N₂⁺ (*B*) by He₂⁺; Fig. 2 shows pertinent states¹¹ of N₂, N₂⁺, and He₂ ($a^{3}\Sigma_{u}^{+}$),^{1c} the repulsive He-He potential,¹² and a Morse curve¹³ for He_2^+ . Vertical acceptance of an electron by He_2^+ to the He-He repulsive curve has an effective recombination energy in the range 18.3–20.3 eV, with maximum probability at about 19 eV, resonant with low vibrational levels of N₂⁺ (B). The He⁺ recombination energy on the other hand is fixed at 24.6 eV, not having the latitude provided by the repulsive He-He potential. (Note that the ground state of He lies so deep that production of excited He or He₂ is prohibited at 5-eV translational energy.) The variable recombination energy covering the resonant range probably accounts for the unusually high cross section and may play a crucial role in the nitrogen-ion laser.

Previous studies of vibrational-state distributions⁴ of N_2^+ (B) produced by charge transfer with a variety of positive ions at energies below several keV have shown that in addition to v' = 0 and 1, v'=2, 3, and 4 are also significantly populated. This is in contrast to state distributions predicted by a model which assumes vertical ionization of $N_2 [X^1 \Sigma_g^+ (v=0)]$ to N_2^+ (B). Franck-Condon factors³ indicate ~ 90% population of v' = 0, ~10% of v'=1, and negligibly small amounts in higher vibrational levels. The ions used in the earlier work, unlike He₂⁺, all produced a single, bound neutral after electron transfer. Formation of higher v' levels in slow collisions with ions has been attributed to distortion of the target N₂ molecule in the field of the ion, causing a

FIG. 2. Potential energy curves for N₂ and N₂⁺ (Ref. 11) and He₂ $(a^{3}\Sigma_{u}^{+})$ (Ref. 1c), a Morse potential for He₂⁺ (Ref. 13), and the repulsive He-He potential (Ref. 12). The known band systems of N₂⁺ are indicated with the Roman numeral designations of Ref. 1c. I, $B \rightarrow X(1N)$; II, $C \rightarrow X(2N)$; III, $A \rightarrow X(Meinel)$; IV, $D \rightarrow A$ (Janin-d'Incan).

VOLUME 35, NUMBER 11

shift in the equilibrium internuclear separation of N₂ appropriate for calculation of overlap integrals.^{4,14} The ratio of cross sections for N_2^+ (B) production in the two systems studied here suggests an effective impact parameter for He₂⁺ that is roughly ten times that for He⁺, and since the ion-induced dipole potential is proportional to r^{-4} , electron transfer to He₂⁺ will occur when the N₂ is essentially unpolarized. Thus the state distribution is expected to be consistent with Franck-Condon transitions from an undistorted nitrogen molecule. The insets in Fig. 1 show the $\Delta v = 0$ and $\Delta v = -1$ sequences of N_2^+ (1N) from $He_2^+ - N_2$ collisions under higher resolution (4 Å). Clearly, v' = 0 is preferentially populated; a small fraction of v' = 1 and an even smaller fraction of v' = 2 also occur. This is in sharp contrast to the Ar^+-N_2 experiments of Brandt, Ottinger, and Simonis⁴ who found essentially equal contributions to $\Delta v = 1$ from each of the (0,1), (1,2), (2,3), (3,4) and (4,5) bands at 500 eV. Moore and $Doering^{4b}$ observed a ratio of the first four of these bands of approximately 4:3:2:1 in 300-eV H_2^+ collisions. The He⁺ experiments reported here show population of even higher vibrational levels. It may be concluded that the differences in the magnitudes of the cross sections satisfactorily account for the differences in the observed state distributions.

The higher-resolution studies shown in Fig. 1 separate the contributions from v' = 0 and v' = 1. This provides a lower limit (since $\Delta v = -2$ was ignored) of 11.9 Å² for the cross section for production of $N_2^+ [B^2 \Sigma_u^+ (v' = 0)]$ in He₂⁺ collisions at 5 eV. ^{1a}L. G. Piper, L. Gundel, J. E. Velazco, and D. W. Setser, J. Chem. Phys. <u>62</u>, 3883 (1975), and references therein.

^{1b}C. B. Collins and W. W. Robertson, J. Chem. Phys. <u>40</u>, 701 (1964).
^{1C}B. Rosen, Spectroscopic Data Relative to Diatomic

¹⁰B. Rosen, Spectroscopic Data Relative to Diatomic Molecules (Pergamon, New York, 1970).

²C. B. Collins, Bull. Am. Phys. Soc. <u>20</u>, 569 (1975); C. B. Collins, A. J. Cunningham, and M. Stockton, Appl. Phys. Lett. <u>25</u>, 344 (1974).

³R. W. Nicholls, J. Res. Nat. Bur. Stand., Sect. A <u>65</u>, 451 (1961); T. F. Moran and L. Friedman, J. Chem. Phys. <u>42</u>, 2391 (1965).

^{4a}D. Brandt, Ch. Ottinger, and J. Simonis, Ber. Bunsenges. Phys. Chem. 77, 648 (1973).

^{4b}J. H. Moore, Jr., and J. P. Doering, Phys. Rev. 177, 218 (1969).

⁵H. H. Harris, M. G. Crowley, and J. J. Leventhal, Phys. Rev. Lett. <u>34</u>, 67 (1975); H. H. Harris and J. J. Leventhal, "Ultraviolet Emission in O⁺-H₂ Reactive Scattering" (to be published).

⁶T. R. Grossheim, J. J. Leventhal, and H. H. Harris, Phys. Rev. A 7, 1591 (1973).

⁷R. C. Isler and R. D. Nathan, Phys. Rev. A <u>6</u>, 1036 (1972).

⁸R. A. Anderson, At. Data <u>3</u>, 227 (1971); W. L. Wiese, M. W. Smith, and B. M. Glennon, *Atomic Transition Probabilities*, U. S. National Bureau of Standards, National Standards Reference Data Series—4 (U. S. GPO, Washington, D. C., 1966).

⁹R. F. Holland and W. B. Maier, II, J. Chem. Phys. 55, 1299 (1971); W. B. Maier, II, and R. F. Holland, J. Chem. Phys. 59, 4501 (1973).

¹⁰Recently it has been suggested that these unresolved emissions involve new electronic states of N_2^+ . See D. C. Cartwright and T. H. Dunning, Jr., J. Phys. B: At. Mol. Phys. <u>8</u>, L100 (1975); E. W. Thulstrup and A. Anderson, J. Phys. B: At. Mol. Phys <u>8</u>, 965 (1975). ¹¹F. R. Gilmore, J. Quant. Spectrosc. Radiat. Transfer 5, 369 (1965).

¹²P. B. Foreman, P. K. Rol, and K. P. Coffin, J. Chem. Phys. 61, 1658 (1974).

¹³Molecular parameters for He_2^+ from M. L. Ginter and D. S. Ginter, J. Chem. Phys. <u>48</u>, 2284 (1968).

¹⁴M. Lipeles, J. Chem. Phys. <u>51</u>, 1252 (1969).

Research supported by the U. S. Energy Research and Development Administration under Contract No. E(11-1)-2718.